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Overview

1. Statistical inference: how hypothesis testing can be used to determine whether a

statement  about the value of a  population parameter  should or should

not be rejected .

2. The _null _ hypothesis ( _Hy ): making a  tentative assumption  about a

population parameter.

3. The alternative  hypothesis ( H, ): the opposite of what is stated in Hy.

4. The hypothesis testing procedure uses  data from a sample  to test the two com-

peting statements indicated by Hy and H,.

5. This chapter shows how hypothesis tests can be conducted about a  population mean

and a  population proportion

(112—2) %ﬁgﬁ'%ﬂ (:) February 19, 2024


http://www.hmwu.idv.tw

Chapter 9: Hypothesis Tests Page 2/44

9.1 Developing Null and Alternative Hypotheses

1. It is  not always obvious how the null and alternative hypotheses should be

formulated.

2. All hypothesis testing applications involve collecting a  sample  and using the

sample results to provide evidence  for drawing a  conclusion

3. In some situations it is easier to identify 7,  first and then develop FH, .

4. In other situations it is easier to identify  f7,  first and then develop FH, .

The Alternative Hypothesis as a Research Hypothesis

1. Many applications of hypothesis testing involve an attempt to gather evidence in

support of a research hypothesis . In these situations, it is often best to begin

with the alternative  hypothesis and make it the conclusion that the researcher

hopes to support

2. Consider a particular automobile that currently attains a fuel efficiency

of 24 miles per gallon in city driving.

(a) Goal: A product research group has developed a new  fuel injection sys-
tem (WAKIIES 2 4%) designed to  increase  the miles-per-gallon rating.
The group will run controlled tests with the new fuel injection system looking
for statistical support for the conclusion that the new fuel injection system

provides more miles per gallon than the current system.

(b) Several new fuel injection units will be manufactured, installed in test auto-

mobiles, and subjected to research-controlled driving conditions.

(C) The sample mean miles per gallon for these automobiles will be com-

puted and used in a hypothesis test to determine if it can be concluded that

the new system provides  more than 24 miles per gallon

(d) In terms of the population mean miles per gallon ;; , the research hypoth-

esis ;> 24  becomes the alternative hypothesis.
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(e) Since the current system provides an average or mean of 24 miles per gallon,
we will make the tentative assumption that the new system is not any better

than the current system and choose ;1 <24  as the null hypothesis.

Hy: <24, Hy:p>24

(f) If the sample results lead to the conclusion to reject Hy, the inference can be

made that [, : > 24  is true.

(g) The researchers have the statistical support  to state that the new fuel

injection system increases the mean number of miles per gallon.

(h) If the sample results lead to the conclusion that H, cannot be rejected, the re-
searchers cannot conclude that the new fuel injection system is better than the
current system. Production of automobiles with the new fuel injection system

on the basis of better gas mileage cannot be justified. Perhaps more research

and further testing  can be conducted.

3. Before adopting something new (e.g., products, methods, systems), it is de-

sirable to conduct research to determine if there is  statistical support  for the

conclusion that the new approach is indeed better. In such cases, the research

hypothesis is stated as the  alternative hypothesis

(a) A new teaching method is developed that is believed to be better
than the current method.

i. Hp: the new method is no better than the old method.

ii. H,: the new method is better .

(b) A new sales force bonus plan is developed in an attempt to increase
sales.

i. Hy: the new bonus plan does not increase sales.
ii. H,: the new bonus plan increases sales

(c) A new drug is developed with the goal of lowering blood pressure

more than an existing drug.

i. Hy: the new drug does not provide lower blood pressure than the existing

drug.
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ii. H,: the new drug lowers  blood pressure more than  the existing

drug.

4. Ineachcase, rejection  of the null hypothesis Hy provides  statistical support

for the research hypothesis.

The Null Hypothesis as an Assumption to Be Challenged

1. The situations below that it is helpful to develop the null hypothesis first.

(a) Consider applications of hypothesis testing where we begin with a _ belief

oran assumption  that a statement about the value of a  population

parameter IS _ true .

(b) We will then use a hypothesis test to challenge the assumption and de-

termine if there is statistical evidence to conclude that the assumption is

incorrect

2. The null hypothesis H, expresses the  belief or assumption about the value

of the population parameter. The alternative hypothesis H, is that the belief or

assumption is  incorrect

3. Consider the situation of a manufacturer of soft drink products.

(a) The label on a soft drink bottle states that it contains 67.6 fluid ounces. We

consider the label correct provided the population mean  filling weight for

the bottles is  at least 67.6 fluid ounces.

(b) We would begin with the assumption  that the label is correct and state

the null hypothesis as ;1 > 67.6 .

(c) The challenge to this assumption would imply that the label is incorrect and the
bottles are being under-filled. This challenge would be stated as the alternative
hypothesis ;1 < 67.6 .

Hy:p>67.6 H,:p<67.6

(d) A government agency with the responsibility for validating manufacturing la-

bels could select a sample of soft drinks bottles, compute the  sample mean

filling weight, and use the sample results to test the preceding hypotheses.
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(e) If the sample results lead to the conclusion to  reject H, , the inference

that  H,:p < 67.6is true  can be made. With this statistical support, the

agency is justified in concluding that the label is incorrect  and  underfilling

of the bottles is occurring.

(f) If the sample results indicate [/, cannot be rejected , the assumption that

the manufacturer’s labeling is correct cannot be rejected. With this conclusion,

no action would be taken.

4. Consider the soft drink bottle filling example from the manufacturer’ s

point of view.

(a) The bottle-filling operation has been designed to fill soft drink bottles with
67.6 fluid ounces as stated on the label.

i. The company does not want to  underfill  the containers because that
could result in an underfilling complaint from customers or, perhaps, a
government agency.

ii. However, the company does not want to  overfill containers either
because putting more soft drink than necessary into the containers would

be an unnecessary cost.

(b) The company’s goal would be to adjust the bottle-filling operation so that the
population mean filling weight per bottle is 67.6 fluid ounces as specified on
the label.

(c¢) In a hypothesis testing application, we would begin with the assumption that
the production process is operating correctly and state the null hypothesis as

= 67.6  fluid ounces.

(d) The alternative hypothesis that challenges this assumption is that pw#67.6

which indicates either overfilling or underfilling is occurring.

Hy:p=676 H,:u+#67.6.

(e) Suppose that the soft drink manufacturer uses a quality control procedure to
periodically select a sample of bottles from the filling operation and computes

the  sample mean filling weight per bottle.
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i. If the sample results lead to the conclusion to  reject H, , the inference

is made that ~ H, : u # 67.6  is true. We conclude that the bottles are

not being filled properly and the  production process should be adjusted

to restore the population mean to 67.6 fluid ounces per bottle.

ii. If the sample results indicate [, cannot be rejected , the assumption

that the manufacturer’s bottle filling operation is functioning properly

cannot be rejected. In this case, no further action  would be taken

and the production operation would continue to run.

5. The two preceding forms of the soft drink manufacturing hypothesis test show that

the null and alternative hypotheses may  vary depending upon the point of view

of the researcher or decision maker.

6. To correctly  formulate hypotheses it is important to understand the context of

the situation and structure the hypotheses to provide the information the researcher

or decision maker wants.

Summary Of Forms for Null and Alternative Hypotheses

1. Depending on the situation, hypothesis tests about a population parameter (the

population mean and the population proportion) may take one of three forms:

Ho:p > po Ho:p < po Ho:p=po
Hy < po Hy o p> po Hy o # po
2. The first two forms are called  one-tailed tests . The third form is called a

two-tailed test

3. The equality  part of the expression (either >, <, or =) always appears in the
null  hypothesis.

4. In selecting the proper form of Hy and H,, keep in mind that the alternative

hypothesis is often what  the test is attempting to establish . Hence, asking

whether the user is looking for evidence to support 1 < jug, 1t > jig, or 1t # 1o

will help determine H,.
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9.2 Typel and Type II Errors

1. Ideally the hypothesis testing procedure should lead to the  acceptance of H

when [ is true  and the rejection of Hy when H, is true.

2. (Table 9.1) The correct conclusions are not always possible.

TABLE 9.1  Errors and Correct Conclusions in Hypothesis Testing

Population Condition

Hg True H, True
Correct Type |l
Accept Ho Conclusion Error
Conclusion
. Type | Correct
Ll 2 Error Conclusion

a) We reject Hy if Hy is true, we make a  Type I error

b
(c

(d) If Hy is false (H, is true), we make a  Type Il error ~ when we accept Hy.

(
(b) If H, is true, the conclusion is correct when we reject H.

If Hy is true, the conclusion is correct when we accept Hy.

)
)
)
)

3. An automobile product research group developed a new fuel injection
system designed to increase the miles-per-gallon rating of a particular automobile.

(a) With the current model obtaining an average of 24 miles per gallon, the hy-

pothesis test was formulated as follows.

Hy:p <24 against H,:p>24

(b) The alternative hypothesis, H, : p > 24, indicates that the researchers are

looking for  sample evidence to support ~ the conclusion that the popula-

tion mean miles per gallon with the new fuel injection systemis  greater than

24.

(c) Type I error:  rejecting H, when it is true  corresponds to the researchers

claiming ~ that the new system improves the miles-per-gallon rating (p >

24) when  in fact  the new system is not any better than the current system.
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(d) Type Il error:  accepting H, when it is false  corresponds to the researchers

concluding ~ that the new system is not any better than the current sys-

tem (p < 24) when  in fact the new system improves miles-per-gallon

performance.

4. Level of Significance: The level of significance is the probability of making a

Type I error when the null hypothesis is true as an  equality .

(a) For the miles-per-gallon rating hypothesis test, the null hypothesis
is Hy : ;1 < 24. Suppose the null hypothesis is true as an  equality  ; that is,

=24 . Thelevel of significance is the probability of  rejecting Hy : pn < 24

when ;=24 .
(b) The Greek symbol o  (alpha) is used to denote the level of significance,

and common choices for v are  0.05 and 0.01

(¢) In practice, the person responsible for the hypothesis test specifies the level of

significance. By selecting «, that person is  controlling the probability — of

making a Type I error.

(d) If the cost of making a TypeIerroris high (not too high) , small (larger)

values of « are preferred.

5. The significance tests: Applications of hypothesis testing that only control for

the Type I error are called  significance tests

6. Although most applications of hypothesis testing control for the probability of mak-
ing a Type I error, they do not always control for the probability of making a
Type II error

(a) Hence, if we decide to accept Hp, we cannot determine  how confident

we can be with that decision. Because of the  uncertainty associated

with making a Type II error when conducting significance tests, statisticians

usually recommend that we use the statement  ”do not reject H,”  instead

of  accept Hy.

(b) Using the statement ”do not reject Hy” carries the recommendation to  withhold

both judgment and action . In effect, by not directly accepting Hy, the

statistician _ avoids the risk  of making a Type II error.
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(¢) Whenever the probability of making a Type II error has not been determined

and controlled, we will not make the statement  ”accept H,.”  Insuch cases,

only two conclusions are possible:  do not reject Hy  or  reject H

(d) Although controlling for a Type II error in hypothesis testing is  not common

it can be done. In Sections 9.7 and 9.8 we will illustrate procedures for

determining and controlling the probability of making a Type II error. If

proper controls have been established for this error, action  based on the

"accept H,”  conclusion can be appropriate.

"0 E AR R ERARE

BERE

H,is true ERBERR —

;;\‘l

X 3

(,i': ‘\\ H, is false
R 7
B BR=E B—RE BEINER
BRRE

H, is true ELZEHRR

Y, \ H, is false
v A5 —
B 3= B—RE BRInER
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9.3 Population Mean: ¢ Known

One-tailed Test

1. One-tailed tests about a population mean take one of the following two forms:

Lower Tail Test Upper Tail Test
Ho:p > po Ho: < po
H, < po Hy > po

2. The Federal Trade Commission (FTC) periodically conducts statistical
studies designed to test the claims that manufacturers make about their products.
For example, the label on a large can of Hilltop Coffee states that the can contains
3 pounds of coffee. The FTC knows that Hilltop’s production process cannot place
exactly 3 pounds of coffee in each can, even if the mean filling weight for the pop-
ulation of all cans filled is 3 pounds per can (yy = 3). However, as long as the
population mean filling weight is at least 3 pounds per can, the rights of consumers
will be protected. Thus, the FTC interprets the label information on a large can
of coffee as a claim by Hilltop that the population mean filling weight is at least 3
pounds per can. We will show how the FTC can check Hilltop’s claim by conducting

a lower tail hypothesis test

(a) Develop the null and alternative hypotheses for the test. If the population mean

filling weight is at least 3 pounds per can, Hilltop’s claim is correct:
Hy: nw>3 H,: <3

i. If the sample data indicate that [/, cannot be rejected , no action

should be taken against Hilltop.

ii. If the sample data indicate  H, can be rejected , H, : p < 3, is true.

A conclusion of  underfilling  and a charge of a label violation against
Hilltop would be justified.

iii. Suppose a sample of n = 36 cans of coffee is selected and the sample mean

7 is computed as an estimate of the population mean ;. If the

value of the sample mean z is _ less than 3 pounds, the sample results

will  cast doubt  on the null hypothesis.
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(b) Specifying the level of significance, a:

i. (Recall) The level of significance is the probability of making a Type I

error by  rejecting H when Hj is true as an  equality .

ii. Ifthe cost  of makinga Typelerroris high (not high) ,a__ small

(larger) value  should be chosen for the level of significance.

iii. In the Hilltop Coffee study, the director of the FTC’s testing program
made the following statement: ”If the company is meeting its weight spec-
ifications at = 3, I do not want to take action against them. But, I
am willing to risk a 1% chance of making such an error.” From the direc-
tor’s statement, we set the level of significance for the hypothesis test at

a =0.01

iv. Thus, we must design the hypothesis test so that the probability of making
a Typelerror  when p=3is 0.01.

3. By developing the null and alternative  hypotheses  and specifying the level of

significance  for the test, we carry out the first two steps required in conducting

every hypothesis test. We are now ready to perform the third step of hypothesis

testing:  collect the sample  data and compute the value of what is called a

test statistic

Test statistic

1. For the Hilltop Coffee study, previous FTC tests show that the population
standard deviation can be assumed known  with a value of 0 = 0.18. These
tests also show that the population of filling weights can be assumed to have a

normal distribution.

2. The sampling distribution of Z is  normally  distributed with a known value of

o = 0.18 and a sample size of n = 36.

3. (Figure 9.1) the sampling distribution of z when the null hypothesis is true as an
equality (1 = po = 3). The standard error of 7 is given by 0; = o/\/n = 0.18/\/% —=0.03

The sampling distribution of

z = S S is a standard normal distribution.
Oz 0.03
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Chapter 9: Hypothesis Tests Page 12/44

FIGURE 9.1  Sampling Distribution of x for the Hilltop Coffee Study When

the Null Hypothesis Is True as an Equality (u = 3)

Sampling distribution
of ¥

=l

4. Avalueof »= -1 (2= -3) meansthatthevalueofZis one (three) standard

error  below the hypothesized value of the mean.

5. The lower tail area at z = —3.00is _ (0.0013 . Hence, the probability of obtaining

a value of z that is three or more standard errors  below the mean is 0.0013.

6. The probability of obtaining a value of Z that is 3 or more standard errors below the
hypothesized population mean o = 3 is also 0.0013. Such a result is  unlikely
if the null hypothesis is true.

7. For hypothesis tests about a population mean in the o known case, we use the stan-

dard normal random variable » asa test statistic  to determine whether z

deviates from  the hypothesized value of 1 enough to justify rejecting the null

hypothesis.

8. Test Statistic for Hypothesis Tests About a Population Mean: ¢ Known

T — o
L

_o/vn

9. The key question for a lower tail test is, How small = must the test statistic z be

before we choose to  reject H, 7 Two approaches: the  p-value approach

and the  critical value  approach.
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p-value approach

1. p-value: A p-value is a probability that provides a measure  of the evidence

against [,  provided by the sample .

(a) The p-value is used to determine whether Hy should be  rejected .

(b) A small p-value  indicates the value of the test statistic is  unusual

given the assumption that [ is true

(¢)  Smaller  p-values indicate more evidence  against Hp.

2. The value of the test statistic is used to compute the p-value.

(a) For a _ lower tail  test, the p-value is the probability of obtaining a value

for the test statistic assmallas or smaller  than that provided by

the sample.

(b) To compute the p-value for the lower tail test in the o known case, we use the

standard normal distribution to find the probability that ~ is  less than or equal to

the value of the test statistic.

(c) After computing the p-value, we must then decide whether itis  small enough

to reject the null hypothesis; as we will show, this decision involves comparing

the p-value to the level of significance.

€ QUESLION ..o (p427)

Suppose the sample of 36 Hilltop coffee cans provides a sample mean of ¥ = 2.92
pounds. Is £ = 2.92 small enough to cause us to reject Hy? Compute the p-value
for the Hilltop Coffee lower tail test.

sol:

— Because this is a lower tail test, the p-value is the area under the standard

normal curve for values of z < the value of the test statistic.
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— Using 7 = 2.92, 0 = 0.18, and n = 36, the value of the test statistic z:

T—p  2.92-3
z = = = —2.67
o/vn  0.18//36

— p-value = P(z < —2.67) =0.0038

— (Figure 9.2) = 2.92 corresponds to z = —2.67 and a p-value = 0.0038.

FIGURE 9.2 p-Value for the Hilltop Coffee Study When x = 2.92

and z = -2.67

Sampling distribution
of ¥

| 57
/ | ko =3
57 = : |
I
I
Sampling distribution :
x-3
fz ==X !
RN !
]
1
1
1
]
]
p-value = .0038 :
[
i

3. This p-value (0.0038) indicates a small probability of  obtaining a sample mean

of T = 2.92 (and a test statistic of —2.67) or smaller when sampling from a popu-

lation with =3 .
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10.

This p-value does not provide much support for the null hypothesis, but  is it small

enough to cause us to reject Hy? The answer depends upon o for the test.

As noted previously, the director of the FTC’s testing program selected a value of

0.01 for the level of significance means that the director is  willing to tolerate

a probability of 0.01 of rejecting Hy when it is true as an  equality (po = 3)

The sample of 36 coffee cans in the Hilltop Coffee study resulted in a p-value =
0.0038, which means that the probability ~ of obtaining a value of z = 2.92 or

less when Hj is true as an equality is  (0.0038 .

Because  p-value = 0.0038 < o = 0.01 , we reject Hy . Therefore, we find

sufficient statistical evidence  to reject the null hypothesis at the 0.01 level of

significance.

Rejection Rule Using p-value. For a level of significance «, the rejection rule

using the p-value approach is:

Reject Hy if p-value < «

In the Hilltop Coffee test, the p-value of 0.0038 resulted in the rejection
of Hy. The observed p-value of 0.0038 means that we would reject Hy for any value of

a > 0.0038 . For this reason, the p-value is also called  the observed level of

significance

Different decision makers may express different opinions concerning the cost of

making a Type I error  and may choose a __ different o

Critical value approach

1.

The critical value is the value of the test statistic that correspondstoan area of o

in the lower tail of the  sampling distribution  of the test statistic.

The critical value is the  largest value of the test statistic that will result in the

rejection of the null hypothesis.

For a lower tail test, the critical value serves as a  bhenchmark for determin-

ing whether the value of the test statistic is  small enough  to reject the null

hypothesis.
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4. the Hilltop Coffee example.

(a) In the o known case, the sampling distribution for the test statistic z is a

standard normal distribution. Therefore, the critical value is the value

of the test statistic that corresponds to an area of o = (.01  in the lower

tail of a standard normal distribution.

(b) (Figure 9.3) We find that —z,,, = —2.33  provides an area of 0.01 in the
lower tail, P(z < —2.33) =0.01

(c) If the sample results in a value of the test statistic that is less than or equal
to —2.33, the corresponding p-value will be less than or equal to 0.01; in this

case, we should reject Hy.

FIGURE 9.3  Critical Value = —2.33 for the Hilltop Coffee Hypothesis Test

Sampling distribution of
_ X—to

z—
o/\ln

a =.01

%
z=-2.33 0

(d) Hence, for the Hilltop Coffee study the critical value  rejection rule  for a

level of significance of 0.01 is

Reject Hy if 2 < —2.33

(e) In the Hilltop Coffee example, Z = 2.92 and the test statistic is z = —2.67.
Because > = —-267 < —2.33 , we can reject Hy and conclude that Hilltop

Coffee is  underfilling cans.

5. Rejection Rule for a Lower Tail Test: Critical Value Approach. We can
generalize the rejection rule for the critical value approach to handle any level of

significance. The rejection rule for a lower tail test follows.

Reject Hy if =2 < —2,

(112-2) #EtE (D) February 19, 2024



Chapter 9: Hypothesis Tests Page 17/44

where —z, is the critical value ; that is, the z value that provides an area of «

in the lower tail of the standard normal distribution.

Summary

1. The p-value approach to hypothesis testing and the critical value approach will

always lead to  the same  rejection decision.

2. The advantage of the p-value approach is that the p-value tellsus  how significant

the results are (the observed level of significance).

3. If we use the critical value approach, we only know that the results are significant

at the stated «

4. We can use the same general approach to conduct an  upper tail test . The test

statistic z is still computed using equation (9.1). But, for an upper tail test, the p-

value is the probability of obtaining a value for the test statistic  as large as or

larger than  that provided by the sample.

5. To compute the p-value for the upper tail test in the o known case, we must use the

standard normal distribution to find the probability that zis  greater than or equal to

the value of the test statistic.
6. Computation of p-Values for One-Tailed Tests

(a) Compute the value of the test statistic using equation (9.1):

T — o
o/\/n

(b) Lower tail test: Using the standard normal distribution, compute the proba-

z =

bility that z is  less than or equal to  the value of the test statistic (area

in the lower tail) .

(¢) Upper tail test: Using the standard normal distribution, compute the probabil-

ity that zis  greater than or equal to  the value of the test statistic (area

in the upper tail).
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Two-tailed Test

1. The general form for a two-tailed test about a population mean:

Ho:p=po, Ha:p#po

2. The U.S. Golf Association (USGA) establishes rules that manufactur-
ers of golf equipment must meet if their products are to be acceptable for use in
USGA events. MaxFlight Inc. uses a high-technology manufacturing process to
produce golf balls with a mean driving distance of 295 yards. Sometimes, however,
the process gets out of adjustment and produces golf balls with a mean driving dis-
tance different from 295 yards. When the mean distance falls below 295 yards, the
company worries about losing sales because the golf balls do not provide as much
distance as advertised. When the mean distance passes 295 yards, MaxFlight’s golf
balls may be rejected by the USGA for exceeding the overall distance standard con-
cerning carry and roll. MaxFlight’s quality control program involves taking periodic
samples of 50 golf balls to monitor the manufacturing process. For each sample,
a hypothesis test is conducted to determine whether the process has fallen out of

adjustment.

(a) We begin by assuming that the process is functioning correctly; that is, the
golf balls being produced have a mean distance of 295 yards. This assumption
establishes the null hypothesis. The alternative hypothesis is that the mean

distance is not equal to 295 yards.

Hy: =295 H,:u#295

(b) If the sample mean Zis  significantly less ~ than 295 yardsor  significantly greater

than 295 yards, we will reject Hy. In this case, corrective action will be taken

to adjust the manufacturing process.

(c¢) If z does not deviate from the hypothesized mean pg = 295 by a significant

amount, Hy will not be rejected and no action  will be taken to adjust the

manufacturing process.

(d) The quality control team selected av = 0.05 as the level of significance for the

test. Data from previous tests conducted when the process was known to be

(112—2) %ﬁgﬁ'%ﬂ (:) February 19, 2024



Chapter 9: Hypothesis Tests Page 19/44

in adjustment show that the population standard deviation can be assumed
known with a value of s =12 . Thus, with a sample size of n = 50, the

standard error of Z is
o 12 B
vn o /50

(e) Because the sample size is large, the  central limit theorem allows us

Oz = 1.7

to conclude that the sampling distribution of  can be approximated by a

normal distribution

(f) (Figure 9.4) the sampling distribution of Z for the MaxFlight hypothesis test
with a hypothesized population mean of pg = 295.

FIGURE 9.4  Sampling Distribution of x for the MaxFlight Hypothesis Test

Sampling distribution
of X

=l

3. Suppose that a sample of 50 golf balls is selected and that the sample mean is
T = 297.6 yards. This sample mean provides support for the conclusion that the

population mean is larger than 295 yards. Is this value of £ = enough larger than

295 to cause us to reject Hy at the 0.05 level of significance?

p-value approach

1. (Recall) the p-value is a probability used to determine whether the null hypothesis
should be rejected.

2. For a two-tailed test, values of the test statistic  in either tail  provide evidence

against the null hypothesis.
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3. For a two-tailed test, the p-value is the probability of obtaining a value for the
test statistic  as unlikely as ~ or  more unlikely than  that provided by the

sample.

4. the MaxFlight hypothesis test example.

(a) Compute the value of the test statistic. For the o known case, the test statistic
z is a standard normal random variable. Using equation (9.1) with = 297.6,

the value of the test statistic is

T — 297.6 — 2
,— T _ 97.6 95:1'53

a/vn  12/4/50

(b) Compute the p-value. Find the probability of obtaining a value for the test

statistic ~ at least as unlikely as z = 1.53 . Clearly values of = > 153

are at least as unlikely.

(c¢) But, because this is a _ two-tailed  test, values of - < —1.53  are also

at least as unlikely as the value of the test statistic provided by the sample.

(d) (Figure 9.5) the two-tailed p-value:  P(z < —1.53) + P(z > 1.53)

(e) Because the normal curve is symmetric, P(z < 1.53) = 0.9370 . Thus, the
upper tail area is P(z > 1.53) = 1.0000—0.9370 = 0.0630

FIGURE 9.5 p-Value for the MaxFlight Hypothesis Test

P(z = —1.53) = .0630 P(z = 1.53) = .0630

0

p-value = 2(.0630) = .1260

(f) The p-value for the MaxFlight two-tailed hypothesis test is

p-value =  2(0.0630) = 0.1260
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(g) With a level of significance of a = 0.05, we  do not reject H,  because the

p-value = 0.1260 > 0.05 . Because the null hypothesis is not rejected, no

action will be taken to adjust the MaxFlight manufacturing process.
5. Computation of p-Values for Two-Tailed Tests.

(a) Compute the value of the test statistic using equation (9.1).

(b) If the value of the test statistic is in the upper tail , compute the proba-

bility that z is  greater than or equal to  the value of the test statistic (the

upper tail area).

(c) If the value of the test statistic is in the lower tail , compute the prob-

ability that z is  less than or equal to  the value of the test statistic (the

lower tail area).

(d) Double the probability (or tail area) from step (b) or (c¢) to obtain the p-value.

Critical value approach

1. (Figure 9.6) the critical values for the test will occur in both the lower and upper
tails of the standard normal distribution. With a level of significance of a = 0.05, the

area in each tail corresponding to the critical values is /2 = 0.05/2 = 0.025

FIGURE 9.6  Ciritical Values for the MaxFlight Hypothesis Test

Area =.025 Area =.025

1 4
—1.96 0 1.96

Reject Hy | | Reject Hy
|

2. The critical values for the test statisticare —z;50; = —1.96 and  z; 95 = 1.96
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3. The two-tailed rejection rule is

Reject Hy if 2 < —1.96 or if z > 1.96

4. Because the value of the test statistic for the MaxFlight study is z = 1.53, the

statistical evidence will not permit us to reject the null hypothesis at the 0.05 level

of significance.

Summary and Practical Advice

1. Summary of the hypothesis testing procedures about a population mean for the o

known case. Note that g is the hypothesized value of the population mean.

TABLE 9.2  Summary of Hypothesis Tests About a Population Mean: o Known Case

Lower Tail Test Upper Tail Test Two-Tailed Test
T Hol = o Hol b= 1o Hol b= Ko
yp Hyw <o Hy: > po H,: e # po
X - X - X -
Test Statistic z=="10 =l e
a/Vn a/Vn a/Vn
Rejection Rule: Reject H, if Reject H, if Reject Hy if
p-Value Approach p-value = a p-value = a p-value = a
Rejection Rule: Reject Hy if Reject Hy if Reject H, if
Critical Value z=-z, ZE=F 8 zZ=-2,,
Approach orifz=z,,

2. Steps of Hypothesis Testing

Step 1. Develop the null and alternative hypotheses ( H,, H, ).
Step 2. Specify the level of significance (o).

Step 3. Collect the sample data ( x = {zy,75,---,2,} ) and compute the value of
the test statistic ( 7T'(x) =z ).

p-value Approach

Step 4. Use the value of the test statistic to compute the p-value.
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Step 5. Reject H, if the p-va]ue <«

Step 6. Interpret the statistical conclusion  in the context of the application.

Critical Value Approach

Step 4. Use a to determine the critical value (_ z, or z,, ) and the rejection

rule.

Step 5. Use the value of the test statistic and the rejection rule to determine whether

to reject Hy.

Step 6. Interpret the statistical conclusion in the context of the application.

3. Practical advice about the sample size for hypothesis tests is similar to the advice

we provided about the sample size for interval estimation in Chapter 8.

(a) In most applications, a sample size of 1 > 30 is adequate when using the

hypothesis testing procedure described in this section.

(b) If the population is normally  distributed, the hypothesis testing proce-

dure that we described is _exact  and can be used for any sample size.

(c) If the population is not normally distributed but is at least  roughly symmetric

sample sizes as small as 15 can be expected to provide acceptable results.

Relationship Between Interval Estimation and Hypothesis Test-

ing

1. (Recall, Chapter 8) For the o known case, the (1—a)% confidence interval estimate

of a population mean is given by

o

Tt zop——.
/2\/ﬁ

2. (Recall, Chapter 9) a two-tailed hypothesis test about a population mean:

Hy:p=po, Ha:p# po

where g1 is the hypothesized value for the population mean.
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3. Constructing a 100(1—a)% confidence interval for the population mean:  100(1—a)%

of the confidence intervals generated  will contain the population mean and

100a%  of the confidence intervals generated  will not contain  the popu-

lation mean.

4. If we reject Hy whenever the confidence interval does not contain py, we will be

rejecting Hy when it is true (p = pp) with probability o.
5. Recall that « is the probability of rejecting the null hypothesis when it is true.

6. So constructing a  100(1—«)%  confidence interval and rejecting Hy whenever

the interval does not contain 9 is  equivalent to conducting a  two-tailed

hypothesis test with o as the level of significance.

7. A Confidence Interval Approach to Testing a Hypothesis of the Form:

Ho:p=po, Ha:p#po

(a) Select a simple random sample from the population and use the value of the

sample mean ¥ to develop the confidence interval for the population mean .

T+ ZQ/Q%

(b) If the confidence interval contains the hypothesized value  y, , do not reject

Hy. Otherwise, reject Hy

8. Note that this discussion and example pertain to two-tailed hypothesis tests about a
population mean. However, the same confidence interval and two-tailed hypothesis

testing relationship exists for other population parameters.

9. The relationship can also be extended to one-tailed tests about population parame-

ters. Doing so, however, requires the development of  one-sided confidence intervals

which are rarely used in practice.

€ QUESLION ... (p435)
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The MaxFlight hypothesis test takes the following form:
Hy:p=295H,: ju+#295.

Conducting the MaxFlight hypothesis test with a level of significance of o = 0.05

using the confidence interval approach.

sol:

— We sampled n =50 golf balls and found a sample mean distance of

r = 297.6  yards. Recall that the population standard deviationis o = 12

— The 95% confidence interval estimate of the population mean is

_ g
T+ 20.025 —F—

NZD

12
2976 £ 1.96——
V50

2076 + 3.3 or (294.3,300.9).

— With 95% confidence, the mean distance for the population of golf balls is
between 294.3 and 300.9 yards.

— Because the interval contains the hypothesized value for the population mean,
o = 295, the hypothesis testing conclusion is that the null hypothesis, Hj :
1= 295, cannot be rejected.

9.4 Population Mean: ¢ Unknown

1. To conduct a hypothesis test about a population mean for the ¢ unknown case,

the sample mean 7  is used as an estimate of ;  and the sample standard

deviation s is used as an estimate of &
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2. (Recall) For the o known case, the sampling distribution of the test statistic has a

standard normal  distribution. For the o unknown case, however, the sampling

distribution of the test statistic follows the ¢ distribution ; it has slightly more

variability because the sample is used to develop estimates of both p and o.

3. Test Statistic for Hypothesis Tests about a Population Mean: ¢ Unknown

the test statistic has a t distribution with n—1 degrees of freedom:

T — U
‘= Ho

s/

4. The t distribution is based on an assumption that the population  from which

(9.2)

we are sampling has a normal  distribution. However, research shows that this

assumption can be relaxed considerably when the sample size is  large enough

One-tailed Test

1. A business travel magazine wants to classify transatlantic gateway air-
ports according to the mean rating for the population of business travelers. A rating

scale with a low score of 0 and a high score of 10 will be used, and airports with
a population mean rating greater than 7 will be designated as superior service air-
ports. The magazine staff surveyed a sample of 60 business travelers at each airport
to obtain the ratings data. The sample for London’s Heathrow Airport provided a
sample mean rating of * = 7.25 and a sample standard deviation of s = 1.052. Do

the data indicate that Heathrow should be designated as a superior service airport?

(a) We want to develop a hypothesis test for which the decision to reject H
will lead to the conclusion that the population mean rating for the Heathrow

Airport is greater than 7.

(b) The null and alternative hypotheses for this upper tail test:

Hy:pn <7, Hy:p>7

(¢) Use a = 0.05, with z = 7.25, uo = 7, s = 1.052, and n = 60, the value of the

test statistic: B
o T Ho 725 =7 184
s/\/n 1.052/\/@
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(d) The sampling distribution of t has  n—1 = 60—1 = 59  degrees of freedom.

Because the test is an upper tail test, the p-value is  P(¢ > 1.84) , that is,

the upper tail area corresponding to the value of the test statistic.

(e) (Table 2 in Appendix B) the ¢ distribution with 59 degrees of freedom provides

the following information.

Area in Upper Tail| 0.20 0.10 0.05 0.025 0.01 0.005
t-Value (59 df) 0.848 1.296 1.671 2.001 2.391 2.662

i. We see that t = 1.84 is between  1.671 and 2.001 . The values in the ”

Area in Upper Tail” row show that the p-value must be less than (.05
and greater than  (.025 .

ii. With a level of significance of v = 0.05, this placement is all we need to
know to make the decision to reject the null hypothesis and conclude that

Heathrow should be classified as a superior service airport.

(f) (Using software) ¢t = 1.84 provides the upper tail p-value of  (0.0354  for
the Heathrow Airport hypothesis test. With  (0.0354 < 0.05 , we reject the

null hypothesis and conclude that Heathrow should be classified as a superior

service airport.

(g) The critical value corresponding to an area of a = 0.05 in the upper tail of a

t distribution with 59 degrees of freedom is #5005 = 1.671

(h) The rejection rule using the critical value approach is to reject Hy if ¢ > 1.671.
Because t=1.84 > 1671 , Hy is rejected. Heathrow should be classified

as a superior service airport.

Two-tailed Test

1. Consider the hypothesis testing situation facing Holiday Toys. The com-
pany manufactures and distributes its products through more than 1000 retail out-

lets. In planning production levels for the coming winter season, Holiday must
decide how many units of each product to produce prior to knowing the actual
demand at the retail level. For this year’s most important new toy, Holiday' s
marketing director is expecting demand to average 40 units per retail outlet. Prior

to making the final production decision based upon this estimate, Holiday decided
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to survey a sample of 25 retailers in order to develop more information about the

demand for the new product. Each retailer was provided with information about

the features of the new toy along with the cost and the suggested selling price. Then

each retailer was asked to specify an anticipated order quantity. With u denoting

the population mean order quantity per retail outlet, the sample data will be used

to conduct the following two-tailed hypothesis test:

(a)

Hy:p=40, H,:p+#40

If Hy cannot be rejected, Holiday will continue its production planning based
on the marketing director’s estimate that the population mean order quantity

per retail outlet will be p = 40 units.

If Hy is rejected, Holiday will immediately reevaluate its production plan for

the product.

A two-tailed hypothesis test is used because Holiday wants to reevaluate the
production plan if the population mean quantity per retail outlet is less than

anticipated or greater than anticipated.

Because no historical data are available (it’s a new product), the population
mean u and the population standard deviation must both be estimated using

7 and s from the sample data.

The sample of 25 retailers provided a mean of z = 37.4 and a standard devia-

tion of s = 11.79 units.

(Check on the form of the population distribution). The histogram of the sample
data showed no evidence of skewness or any extreme outliers, so the analyst

concluded that the use of the ¢ distribution  with n—1 = 24 degrees of

freedom was appropriate.

Using equation (9.2) with z = 37.4, po = 40, s = 11.79, and n = 25, the value
of the test statistic is

; rT—py 374-40 110
s/\/n 11.79/\/570 .

The t distribution table only contains positive ¢ values. Because the ¢ distri-

bution is  symmetric , however, the upper tail area at ¢ =1.10  is the

same as the lower tail area at ¢ = —1.10
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(i) (Table 2 in Appendix B)

Area in Upper Tail| 0.20 0.10 0.05 0.025 0.01 0.005
t-Value (24 df) 0.857 1.318 1.711 2.064 2.492 2.797

(j) We see that ¢t = 1.10 is between  (0.857 and 1.318 . From the ”Area in

Upper Tail” row, we see that the area in the upper tail at ¢ = 1.10 is between

0.20 and 0.10

(k) When we double these amounts, we see that the p-value must be between

0.40 and 0.20 . With a level of significance of a = 0.05, we now

know that the p-value is greater than «. Therefore, Hy cannot be rejected.
Sufficient evidence is not available to conclude that Holiday should change its

production plan for the coming season.

(1) (Software) The p-value obtained is  0.2822 . With a level of significance of
a = 0.05, we cannot reject Hy because 0.2822 > 0.05.

(m) With a = 0.05 and the ¢ distribution with 24 degrees of freedom, — —,,  go5 = —2.064

and 50095 = 2.064  are the critical values for the two-tailed test. The re-

jection rule using the test statistic is

Reject Hy if t < —2.064 or if t > 2.064

(n) Based on the test statistic ¢ = —1.10, Hy cannot be rejected. This result
indicates that Holiday should continue its production planning for the coming

season based on the expectation that ;=40 .

Summary and Practical Advice

1. (Table 9.3) A summary of the hypothesis testing procedures about a population

mean for the ¢ unknown case.
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TABLE 9.3  Summary of Hypothesis Tests About a Population Mean: o Unknown Case

Lower Tail Test Upper Tail Test Two-Tailed Test
Ho: p = po Ho: o = o Ho: = po
LIRSS Hyi < g H > g H,i i # g
L. t:"_ﬁo tzx_#n tzx_#o
Test Statistic s/Vn s/Vn s/Vn
Rejection Rule: Reject H if Reject H, if Reject H, if
p-Value Approach p-value = a p-value = & p-value = a
Rejection Rule: Reject Hy if Reject H, if Reject H, if
Critical Value t=-t, t=t, t=—t,
Approach orift=t,,

2. The applicability of the hypothesis testing procedures of this section is dependent on

the distribution of the population  being sampled from and the  sample size

9.5 Population Proportion

1. Using pg to denote the hypothesized value for the population proportion, the three

forms for a hypothesis test about a population proportion:

lower tail test upper tail test two-tailed test
Ho:p=po Ho:p <po Ho :p=po
Hy:p <po Hy:p>po Hy :p # po

2. Hypothesis tests about a population proportion are based on the difference

between the sample proportion 5  and the hypothesized population proportion
Po -

3. The sampling distribution  of p, the point estimator of the population param-

eter p, is the basis for developing the test statistic.
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4. When the null hypothesis is true as an equality, the expected value of p equals the
hypothesized value po; that is,  F(p) = p, . The standard error of p is given by

])0(1 - po)
n

p

5. (Recall, Chapter 7) we said that if np>5 and n(l—p)>5 , thesampling

distribution of p can be approximated by a normal  distribution. Under these

conditions, which usually apply in practice, the quantity

z= PR (9.3)

has a standard normal probability distribution.

6. Test Statistic for Hypothesis Tests About a Population Proportion

With o, = \/po(1 — po)/n , the standard normal random variable z is the test

statistic used to conduct hypothesis tests about a population proportion.

D — Do

po(1—po)
n

7. (Pine Creek golf course example). Over the past year, 20% of the players

at Pine Creek were women. In an effort to increase the proportion of women players,
Pine Creek implemented a special promotion designed to attract women golfers.
One month after the promotion was implemented, the course manager requested
a statistical study to determine whether the proportion of women players at Pine

Creek had increased.

(a) Because the objective of the study is to determine whether the proportion of

women golfers increased, an upper tail test with  /H,:p > 0.20 is appro-

priate:

Hy:p<0.20, H,:p>0.20

(b) If Hy can be rejected, the test results will give statistical support for the
conclusion that the proportion of women golfers increased and the promotion

was beneficial.
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(¢) The course manager specified that a level of significance of o = 0.05  be

used in carrying out this hypothesis test.

(d) The next step of the hypothesis testing procedure is to select a sample and
compute the value of an appropriate test statistic. Suppose a random sample
of n = 400 players was selected, and that = = 100 of the players were women.
The proportion of women golfers in the sample is

— 100 __

Using equation (9.4), the value of the test statistic is
P—po _ 025—-020 0.05

\/pompo) B \/w ~0.02
n 400

(e) The p-value approach.

z = = 2.50.

i. The p-value is the probability that z is greater than or equalto > =250 .
P(z > 2.50) = 0.9938 , the p-value for the Pine Creek testis _ 1.0000—0.9938 = 0.0062

ii. (Figure 9.7) Recall that the course manager specified a level of significance

of « = 0.05. A p-value = 0.0062 < 0.05  gives sufficient statistical

evidence to reject Hy at the 0.05 level of significance.

iii. The test provides statistical support for the conclusion that the special
promotion increased the proportion of women players at the Pine Creek

golf course.

FIGURE 9.7  Calculation of the p-Value for the Pine Creek Hypothesis Test

Area = .9938

p-value = P(z = 2.50) =.0062

Z
25

(f) The critical value approach. The critical value corresponding to an area of 0.05

in the upper tail of a normal probability distribution is  z,,; = 1.645
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Thus, the rejection rule using the critical value approach is to reject Hy if

z>1.645 . Because =250 > 1.645 , Hy is rejected.

(g) The p-value approach provides more information. With a p-value = 0.0062, the
null hypothesis would be rejected for any level of significance  greater than or

equal to 0.0062

Summary

1. The procedure used to conduct a hypothesis test about a  population proportion

is similar to the procedure used to conduct a hypothesis test about a  population mean

2. Although we only illustrated how to conduct a hypothesis test about a population

proportion for an upper tail test, similar procedures can be used for  lower tail

and two-tailed tests

3. (Table 9.4) A summary of the hypothesis tests about a population proportion. We
assume that np > 5 and n(1—p) > 5; thus the _normal  probability distribution

can be used to approximate the sampling distribution of p.

TABLE 9.4  Summary of Hypothesis Tests About a Population Proportion

Lower Tail Test Upper Tail Test Two-Tailed Test
Ho: p = pg Ho: P = Py Ho: P = Py
Hypotheses ¢ 2
i Hip<po H:p>po H:p # po
,__ PP L PP L, PP
Test Statistic PoT — Po) po(T = Py Pol1 — Po)
n n n
Rejection Rule: Reject H, if Reject H, if Reject H, if
p-Value Approach p-value = & p-value = & p-value = a
Rejection Rule: Reject H, if Reject H, if Reject H, if
Critical Value z= -z, z=z, z=-z,,
Approach orifz=z,,
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9.6 Hypothesis Testing and Decision Making

1. The hypothesis testing applications are considered as  significance tests

(a

)
b) specify the level of significance, «.
)

(
(c
(

formulate the null and alternative hypotheses, Hy, H,.

select a sample, x = {x1, 29, -+, 2, }.

d

) compute the value of a test statistic, T'(x).
(e)
(f

(g

compute the associated p-value.

compare the p-value to a.
p p
conclude "reject Ho” and declare the results significant if p-value < Qs other-

wise, we made the conclusion "do not reject Hy.”

2. With a significance test, we control the probability of making the Type I error, but

not the Type Il error. Thus, we recommended the conclusion  ”do not reject Hy”

rather than  "accept H,”  because the latter puts us at _risk  of making the

Type II error of accepting Hy when it is false.

3. With the conclusion "do not reject Hy,” the statistical evidence is considered  inconclusive

and is usually an indication to  postpone a decision or action until further re-

search and testing can be undertaken.

4. If the purpose of a hypothesis test is to  make a decision = when Hj is true and

a different decision when H, is true, the decision maker may want to, and in

some cases be forced to, take action with both the conclusion do not reject Hy and
the conclusion reject Hy. If this situation occurs, statisticians generally recommend

controlling the probability of making a  Type II error

5. With the probabilities of both the Type I and Type II error controlled, the conclu-

sion from the hypothesis test is  ecither to accept H or reject H,

6. (lot-acceptance example) A quality control manager must decide to ac-
cept a shipment of batteries from a supplier or to return the shipment because of

poor quality.
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(a) Assume that design specifications require batteries from the supplier to have a
mean useful life of at least 120 hours. To evaluate the quality of an incoming

shipment, a sample of 36 batteries will be selected and tested.

(b) On the basis of the sample, a decision must be made to accept the shipment

of batteries or to return it to the supplier because of poor quality.

(c) Let p denote the mean number of hours of useful life for batteries in the

shipment. The null and alternative hypotheses about the population mean:

Hy:p>120, H,:p <120

i. If Hy is rejected, the alternative hypothesis is concluded to be true. This
conclusion indicates that the appropriate action isto  return  the ship-

ment to the supplier.

ii. If Hy is not rejected, the decision maker must still determine what action
should be taken. Thus, without directly concluding that Hy is true, but
merely by not rejecting it, the decision maker will have made the decision

to accept  the shipment as being of satisfactory quality.

(d) In such decision-making situations, it is recommended that the hypothesis
testing procedure be extended to control the probability of making a Type 11

error.

7. Because a decision will be made and action taken when we do not reject Hy, knowl-

edge of the probability of making a  Type II error ~ will be helpful.

9.7 Calculating The Probability of Type II Errors

1. (lot-acceptance example) The null and alternative hypotheses about the

mean number of hours of useful life for a shipment of batteries:

Hy:p>120, H,:p<120.
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(a) If Hy is rejected, the decision willbe to  return  the shipment to the supplier

because the mean hours of useful life are less than the specified 120 hours.

(b) If Hy is not rejected, the decision will be to  accept  the shipment.

2. Suppose a level of significance of o = 0.05, the test statistic in the o known case:

- T—py T—120

o/vn__ a/vn

3. The rejection rule for the lower tail test:

Reject Hy if 2 < —1.645

4. Suppose a sample of n = 36 batteries will be selected and based upon previous
testing the population standard deviation can be assumed known with a value of

o = 12 hours.

5. The rejection rule indicates that we will reject H if

z =

r—120 1.645
—20.05 = —1.
12/v36 =

6. Solving for T in the preceding expression indicates that we will reject Hy if

12
T <120 — 1.645 <> =116.71
V36

7. Rejecting Hy when < 116.71 means that we will make the decision to accept the

shipment whenever > 116.71.
8. Compute probabilities associated with making a Type II error.

(a) (Recall) we make a Type II error whenever the true shipment mean is less than

120 hours and we make the decision to accept Hy : p > 120.

(b) Hence, to compute the probability of making a Type II error, we must select

a value of  ;; less than 120 hours

(¢) For example, suppose the shipment is considered to be of poor quality if the

batteries have a mean life of = 112 hours.
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(d) If p = 112 is really true, what is the probability of accepting Hy : u > 120 and

hence committing a Type II error?

P(z > 116.71), when pu = 112

(e) (Figure 9.8) the sampling distribution of z when the mean is p = 112. The
shaded area in the upper tail gives the probability of obtaining 7 > 116.71

FIGURE 9.8  Probability of a Type Il Error When g = 112

=|

112 116.71

—
l 2360 »| Accept Hy

(f) Using the standard normal distribution, we see that at £ = 116.71

r—p  116.71 — 112
o/\/n 12/+/36
(g) The probability of making a Type Il error when 1 = 112is 3 := P(z > 2.36) = 0.0091

z = = 2.36

(h) Therefore, we can conclude that if the mean of the population is 112 hours,

the probability of making a Type II error is only 0.0091.
(i) We can repeat these calculations for other values of u less than 120.
9. (Table 9.5) we show the probability of making a Type II error for a variety of values
of 1 less than 120. Note that as p increases toward 120, the probability of making

a Type II error increases toward an upper bound of 0.95. However, as u decreases

to values farther below 120, the probability of making a Type II error diminishes.
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10.

11.

12.

TABLE 9.5  Probability of Making a Type Il Error for the Lot-Acceptance

Hypothesis Test
= il Probability of Power
Value of 12/V36 a Type Il Error (8) (1 -p)
112 2.36 .0091 .9909
114 1.36 .0869 9131
115 .86 1949 .8051
116.71 .00 .5000 .5000
117 15 5596 4404
118 — &5 7422 2578
119.999 —1.645 9500 .0500

When the true population mean p is  close to (far below)  the null hypothesis

value of p = 120, the probability is  high (low) that we will make a Type II

error.

For any particular value of p, the poweris 1—3 ; that is, the probability of

correctly rejecting H,  is 1 minus the probability of making a Type II error.

(Figure 9.9) Power curve: the power associated with each value of

FIGURE 9.9 Power Curve for the Lot-Acceptance Hypothesis Test

5

Probability of Correctly Rejecting H;
]
1

112 115 118 120

1
Hj False *"—:

(a) Note that the power curve extends over the values of 11 for which the — H is false
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(b) The height  of the power curve at any value of p indicates the probability

of correctly rejecting Hy when H is false.

13. The step-by-step procedure to compute the probability of making a Type
II error in hypothesis tests about a population mean
(a) Formulate the null and alternative hypotheses.

(b) Use the level of significance a and the critical value approach to determine the

critical value and the rejection rule  for the test.

(c¢) Use the rejection rule to solve for the value of the sample mean  corre-

sponding to the critical value of the test statistic.

(d) Use the results from step (c) to state the values of the sample mean that lead
to the acceptance of Hy. These values define the  acceptance region  for
the test.

(e) Use the sampling distribution of z for a value of u satisfying H,, and the
acceptance region from step (d), to compute the probability that the sample

mean will be in the acceptance region.

(f) This probability is the probability of making a Type II error at the chosen

value of pu.

9.8 Determining The Sample Size for a Hypothesis

Test about a Population Mean

1. Assume that a hypothesis test is to be conducted about the value of a population
mean. The level of significance specified by the user determines the probability of

making a Type I error for the test. By controlling the sample size , the user

can also control the probability of making a  Type II error
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2. Let us show how a sample size can be determined for the following lower tail test

about a population mean.

Ho:p>po,  Hy:p < pig

3. (Figure 9.10) The upper panel is the sampling distribution of Z when Hj is true
with = pyp.

FIGURE 9.10 Determining the Sample Size for Specified Levels of the
Type | (@) and Type Il (B) Errors

Sampling distribution
of X when
Hyis true and o = pg

Hp: o= po
Hﬂ: P«{#D

c

Reject Hy —~—
x
Ko
Sampling distribution
of ¥ when
Hy is false and pa < g
o= &
Note: @5 =
B
1 K_ X
Ha c
4. For a lower tail test, the critical value of the test statistic is denoted —z, . In
the upper panel of the figure the vertical line, labeled ¢ , is the corresponding

value of 7

5. If wereject Hy when T < ¢, the probability of a Type I error willbe a:  P(z < ¢ | Hy T) = «

6. With z, representing the z value corresponding to an area of & in the  upper tail

of the standard normal distribution, we compute ¢ using the following formula:

o

Ho — Za%

CcC =
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7. (Figure 9.10) The lower panel is the sampling distribution of z when the alternative

hypothesis is true with =y, < o . The shaded region shows 3, the

probability of a Type II error that the decision maker will be exposed to if the null

hypothesis is accepted when = > c.

8. With z representing the z value corresponding to an area of 5 in the upper tail of

the standard normal distribution, we compute ¢ using the following formula:

c= (9.6)

o
Mo + Z’jﬁ

9. Now what we want to do is to select a value for ¢ so that when we  reject H,

and accept H, ,the probability of a Type I error is equal to the chosen value of

o and the probability of a Type II error is equal to the chosen value of j3

Therefore, both equations (9.5) and (9.6) must provide the same value for ¢:

g

Ko — Zoz%

g g
Ho — Ha = Zoc%+zﬁﬁ
- (Za + Zg)U
MO Ma - \/ﬁ
\/ﬁ _ (Za + Zg)U
(NJO - ,Ua)

o
Ha +Zﬂ%

10. Sample Size for a One-Tailed Hypothesis Test About a Population Mean

(20 + 25)%0?

i 6-7)

where
e 2, = z value providing an area of « in the upper tail of a standard normal
distribution.

e 23 = z value providing an area of 3 in the upper tail of a standard normal

distribution.
e o = the population standard deviation.
e 1o = the value of the population mean in the null hypothesis.

e 1, = the value of the population mean used for the Type II error.
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Note: In a two-tailed hypothesis test, use (9.7) with 2, ,  replacing =,

11. lot-acceptance example

(a)

The design specification for the shipment of batteries indicated a mean useful
life of at least 120 hours for the batteries. Shipments were rejected if Hy : p >

120 was rejected.

Let us assume that the quality control manager makes the following statements

about the allowable probabilities for the Type I and Type II errors.

i. Type I error statement: If the mean life of the batteries in the shipment
is 4 = 120, I am willing to risk an o = 0.05 probability of rejecting the
shipment.

ii. Type Il error statement: If the mean life of the batteries in the shipment
is 5 hours under the specification (i.e., p = 115), I am willing to risk a
B = 0.10 probability of accepting the shipment.

iii. These statements are based on the judgment of the manager. Someone
else might specify different restrictions on the probabilities. However,
statements about the allowable probabilities of both errors must be made

before the sample size can be determined.

In the example, o =0.05 and 3 =0.10 . Using the standard nor-

mal probability distribution, we have  z,,; = 1.645 and z;,;, = 1.28

From the statements about the error probabilities, we note that ;5 = 120

and  y, =115 . Finally, the population standard deviation was assumed

knownat =12 .

The recommended sample size for the lot-acceptance example is

_— (24 + 23)%02 (L4 + 1.28)%(12)* 103
(Ko — Ha)? (120 —115)>

Rounding up, we recommend a sample size of 50.

Because both the Type I and Type II error probabilities have been  controlled

at allowable levels with n = 50, the quality control manager is now justified in

using the accept Hy and reject Hy statements for the hypothesis test.

12. We can make three observations about the relationship among «, 5, and the sample

size n.
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(a) Once two of the three values are known, the other can be computed.

(b) For a given «, increasing n  will reduce g3

(c) For a given n, decreasing o will increase 3 , whereas increasing

o will decrease f3

13. The third observation should be kept in mind when the probability of a Type II error

is not being controlled. It suggests that one should not choose  unnecessarily small values

for the level of significance

14. For a given sample size, choosing a smaller level of significance means more exposure
to a Type Il error. Inexperienced users of hypothesis testing often think that smaller
values of v are always better. They are better if we are concerned only about making
a Type I error. However, smaller values of o have the disadvantage of increasing

the probability of making a  Type II error

(112—2) %ﬁgﬁ'%ﬂ (:) February 19, 2024



Chapter 9: Hypothesis Tests

Page 44/44

9.9 Big Data And Hypothesis Testing*
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Anderson’s Statistics for Business & Economics (14/E)
Inference About Means and Proportions with
Chapter 10:

Two Populations

FERIFEEL: Y D56, BEEE 260306
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ML nttp://www.hmwu.idv.tw

EN 8 B "3

Overview

1. Discuss the statistical inference (__interval estimates  and  hypothesis tests )

for two population means (three situations: population standard deviations known,

unknown; match samples) and the two population proportions.

2. Examples:

(a) Develop an interval estimate of the difference between the mean starting salary
for a population of men and the mean starting salary for a population of

womern.

(b) Conduct a hypothesis test to determine whether any difference is present be-
tween the proportion of defective parts in a population of parts produced by
supplier A and the proportion of defective parts in a population of parts pro-

duced by supplier B.
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10.1 Inferences About the Difference Between Two

1.

Population Means: 0; and 09 Known

1 (p2)  denote the mean of population 1 (2), we will focus on inferences about

the difference between the means: i, —p, .

A simple random sample of 7, (n,)  units from population 1 (2). The two

samples, taken separately and independently, are referred to as  independent

simple random samples.

Assume the two population standard deviations, o, and o, , can be assumed
known prior  to collecting the samples.
Question: how to computea  margin of error ~ and develop an __interval estimate

of the difference between the two population means when o; and oo are known.

Interval Estimation of pq—pu»

1. Greystone Department Stores, Inc., operates two stores in Buffalo,

New York: One is in the inner city and the other is in a suburban shopping center.
The regional manager noticed that products that sell well in one store do not always
sell well in the other. The manager believes this situation may be attributable to

differences in customer demographics at the two locations. Customers may differ in

age, education, income, and so on. (¥EIRBY)IELREE)

Suppose the manager asks us to investigate the difference between the  mean ages

of the customers who shop at the two stores. (FT¥IEBUEEHK)

Let us define population 1 as all customers who shop at the inner-city store

and population 2 as all customers who shop at the  suburban store

(a) ;@ mean of population 1 (i.e., the mean age of all customers who shop

at the inner-city store)

(b) s : 5 mean of population 2 (i.e., the mean age of all customers who shop

at the suburban store)
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4. The difference between the two population means is  ;;—pu, . To estimate
p1—pto, we will select a simple random sample of  n, customers from popu-

lation 1 and a simple random sample of 7,  customers from population 2.

5. We then compute the two sample means.

(a) 7z, : sample mean age for the simple random sample of n; inner-city cus-
tomers

(b) 7z, : sample mean age for the simple random sample of ny suburban cus-
tomers

6. The point estimator of the difference between the two  population means  is the

difference between the two  sample means

7. Point Estimator of the Difference Between Two Population Means

fu—jlp = T4 — Ty (10.1)

8. (Figure 10.1) the process used to estimate the difference between two population

means based on two independent simple random samples.

FIGURE 10.1 Estimating the Difference Between Two Population Means

Population 1
Inner-City Store Customers

Population 2
Suburban Store Customers

W1 = mean age of inner-city
store customers

o = mean age of suburban
store customers

Wy — o= difference between the mean ages

Two Independent Simple Random Samples

Simple random sample of Simple random sample of
ny inner-city customers 1, suburban customers
X, = sample mean age for the X, = sample mean age for the
inner-city store customers suburban store customers

X| — X, = Point estimator of p; —

9. The point estimator z;—2Z- has a standard error that describes the variation

in the sampling distribution of the estimator.
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10.

11.

12.

13.

14.

Standard Error of z; — zo With two independent simple random samples, the

standard error of Z; — Z» is as follows:

2 2
0—551—532 - — + — (102>
nq N9

(GERRENR:) (Hint: Var(aX +bY) = a2Var(X) + b2Var(Y) 4+ 2abCov(X,Y)).

If both populations have a  normal distribution, or if the sample sizes are

large enough that the central limit theorem  enables us to conclude that the

sampling distributions of Z; and Z, can be approximated by a normal distribution,
the sampling distribution of z;—Z5 will have a  normal  distribution with mean

given by iy, . (Denoted by X — Xy ~ N(py — po, 02 ) )

T1—T2

In general, an interval estimate is given by a point estimate 4+ a margin of error. In
the case of estimation of the difference between two population means, an interval

estimate will take the following form:

(Z1 — Z2) £ Margin of error

With the sampling distribution of ;—, having a normal distribution, we can write
the margin of error as follows:

of 03
Margin of error =z, 0042, = Zapy| — + —
T %)

(10.3)

Interval Estimate of the Difference Between Two Population Means: o,

and 09 Known

o’ o2
(T — T2) £ 202 nfl + 772 (10.4)
1 2

where 1—q is the confidence coefficient.
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(AREREBINT )

£ QUESLION ... (p48s)

Greystone example. Based on data from previous customer demo-
graphic studies, the two population standard deviations are known with o1 =9

years and oy = 10 years. The data collected from the two independent simple

random samples of Greystone customers provided the following results.

Inner City Store Suburban Store

Sample Size n; = 36 ng = 49

Sample Mean z; = 40 years Ty = 35 years

Find the margin of error and the 95% confidence interval estimate of the dif-

ference between the two population means.

sol:

Hypothesis Tests About uq—puo

1. Let us consider hypothesis tests about the difference between two population means.

Using D, to denote the hypothesized difference between p; and ps, the three
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forms for a hypothesis test are as follows:

Left-tailed test Right-tailed test Two-tailed test
Ho: py —ps > Dy Ho:  py— ps < Dy Ho:  py—ps = Dy
Ha . 1 — o < DO Ha : M1 — fo > DQ Ha . M1 — 2 7é DO
2. In many applications, D, =0 . Using the two-tailed test as an example, when

Dy = 0 the null hypothesis is Hy : p1—p2 = 0.

3. In this case, the null hypothesis is that p; and ps are equal. Rejection of H leads
to the conclusion that H, : py—ps # 0 is true; that is, gy and uy are not equal.

4. The general steps for conducting hypothesis tests: choosea level of significance

compute the value of the  test statistic , and find the p-value  to_ determine

whether the null hypothesis should be rejected.

5. With two independent simple random samples, we showed that the point estimator
T1—T9 has a standard error oz, _z, given by expression (10.2) and, when the sample
sizes are large enough, the distribution of Z;—Z5 can be described by a  normal

distribution.

6. Test Statistic for Hypothesis Tests About p; — ps: 07 and oo Known

L (@1 = 7) — Dy (10.5)
0'2 0':2
-1 -2
ni no

7. We demonstrated a two-tailed hypothesis test about the difference between two
population means. Lower tail and upper tail tests can also be considered. These

tests use the  same test statistic  as given in equation (10.5). The procedure

for computing the p-value and the rejection rules for these one-tailed tests are the
same as those for hypothesis tests involving a single population mean and single

population proportion.
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€ QUESLION ..o (p4se6)

As part of a study to evaluate differences in education quality between two train-
ing centers, a standardized examination is given to individuals who are trained at
the centers. The difference between the mean examination scores is used to assess
quality differences between the centers. The population means for the two centers
are as follows. gy is the mean examination score for the population of individuals
trained at center A, us is the mean examination score for the population of individ-
uals trained at center B. We begin with the tentative assumption that no difference
exists between the training quality provided at the two centers. The standardized
examination given previously in a variety of settings always resulted in an exami-
nation score standard deviation near 10 points. Thus, we will use this information
to assume that the population standard deviations are known with oy = 10 and
o9 = 10. An a = 0.05 level of significance is specified for the study. Independent
simple random samples of n; = 30 individuals from training center A and ny = 40
individuals from training center B are taken. The respective sample means are
71 = 82 and Ty = 78. Do these data suggest a significant difference between the
population means at the two training centers? State the null and alternative hy-
potheses for this two-tailed test, compute the test statistic, and state the decision
rules based on the p-value approach and the critical value approach and make the

decision.

sol:
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Practical Advice

1. In most applications of the interval estimation and hypothesis testing procedures

presented in this section, random samples with 7, > 30 and n, > 30 are

adequate.

2. In cases where either or both sample sizes are less than 30, the  distributions

of the populations become important considerations.

3. In general, with smaller sample sizes, it is more important for the analyst to be
satisfied that it is reasonable to assume that the distributions of the two populations

are at least  approximately normal

10.2 Inferences About The Difference Between Two

Population Means: 0; and 0y Unknown

1. Extend the discussion of inferences about the difference between two population

means to the case when the two population standard deviations, o and
o9, are  unknown
2. In this case, we will use the sample standard deviations, s, and s, ,to

estimate the unknown population standard deviations.

3. When we use the sample standard deviations, the interval estimation and hypothesis

testing procedures will be based on the ¢ distribution  rather than the standard

normal distribution.

Interval Estimation of p—pu»

1. Let us develop the margin of error and an interval estimate of the difference between

these two population means. (Recall) The interval estimate for the case when the
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population standard deviations, o; and o5, are known.

2 2
o g
_ _ N 1 2
(xl—JJQ):tZQ/Q ni_*_@
1

2. With oy and 09 unknown, we will use the sample standard deviations s; and sy to

estimate ¢, and 0, and replace z,/2 With ¢, .

3. Interval Estimate of the Difference Between Two Population Means: o,

and o9 Unknown

(10.6)

where 1 — « is the confidence coeflicient.

4. In this expression, the use of the ¢ distribution is an  approximation , but it

provides excellent results and is relatively easy to use. The only difficulty that we en-

counter in using expression (10.6) is determining the appropriate  degrees of freedom

for 24/9.

5. Statistical software packages compute the appropriate degrees of freedom automat-
ically. The formula used is as follows:
Degrees of Freedom: ¢ Distribution With Two Independent Random

Samples )
82 82
df = E”T “) ;  (10.7)
== (1) + 2= (32)
2 QUESLION ..o (p490)

(Clearwater National Bank example) Clearwater National Bank is conducting
a study designed to identify differences between checking account practices by cus-
tomers at two of its branch banks. A simple random sample of 28 checking accounts
is selected from the Cherry Grove Branch and an in dependent simple random sam-
ple of 22 checking accounts is selected from the Beechmont Branch. The current
checking account balance is recorded for each of the checking accounts. A summary

of the account balances follows:
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Cherry Grove Beechmont

Sample Size ny = 28 ng = 22
Sample Mean 71 = $1025 7o = $910
Sample Standard Deviation  s; = $150 s = $125

Clearwater National Bank would like to estimate the difference between the mean
checking account balance maintained by the population of Cherry Grove customers
and the population of Beechmont customers. Compute a 95% confidence interval
estimate of the difference between the population mean checking account balances

at the two branch banks.

sol:

Hypothesis Tests About p1—pus
1. (Recall) Letting Dy denote the hypothesized difference between py and ps, the test
statistic used for the case where o; and o9 are known is as follows.

(./1751 — ZZ'Q) — DQ

2 2
of L 3

z =

ni ng

The test statistic, z, follows the standard normal distribution.

2. When o7 and o5 are unknown, we use s; as an estimator of o7 and s, as an estimator
of g5. Substituting these sample standard deviations for ¢; and o, provides the

following test statistic when oy and o9 are unknown.
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3. Test Statistic for Hypothesis Tests About j; — ps: 07 and o Unknown

‘= (il *.’Y}Q)*DO

(10.8)

The degrees of freedom for t are given by equation (10.7).

2 QUESHION ...\ et (p491)

Consider a new computer software package developed to help systems analysts re-
duce the time required to design, develop, and implement an information system.
To evaluate the benefits of the new software package, a random sample of 24 sys-
tems analysts is selected. Each analyst is given specifications for a hypothetical
information system. Then 12 of the analysts are instructed to produce the infor-
mation system by using current technology. The other 12 analysts are trained in
the use of the new software package and then instructed to use it to produce the
information system. This study involves two populations: a population of systems
analysts using the current technology and a population of systems analysts using
the new software package. In terms of the time required to complete the informa-
tion system design project, the population means are as follows. p; is the mean
project completion time for systems analysts using the current technology and us
is the mean project completion time for systems analysts using the new software
package The researcher in charge of the new software evaluation project hopes to
show that the new software package will provide a shorter mean project completion
time. Thus, the researcher is looking for evidence to conclude that us is less than
(t1; in this case, the difference between the two population means, p1—puo, will be
greater than zero. Suppose that the 24 analysts complete the study with the results
shown in Table 10.1.
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TABLE 10.1 Completion Time Data and Summary Statistics for the Software
Testing Study

Current Technology New Software

300 274

280 220

344 308

385 336

372 198

360 300

288 S5

321 258

376 318

290 310

301 387

283 263
Summary Statistics
Sample size n, = 12 n, =12
Sample mean X1 = 325 hours X; = 286 hours
Sample standard deviation 5 = 40 s, = 44

Let the level of significance be ae = 0.05. State the null and the alternative hypoth-

esis, the test statistic, p-value, the rejection rule, make a decision and conclusion.

sol:

(Software Output)
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TABLE 10.2  Output for the Hypothesis Test on the Difference Between the

Current and New Software Technology

Current New
Mean 325 286
Variance 1600 1936
Observations 12 12
Hypothesized Mean Difference 0
Degrees of Freedom 21
Test Statistic LTI
One-Tail p-value 0.017
One-Tail Critical Value V27

Practical Advice

1. The interval estimation and hypothesis testing procedures presented in this section

are  robust

and can be used with

relatively small

sample sizes.

2. In most applications, equal or nearly equal sample sizes such that the total sample

size Ny -+ No Z 20

populations are not normal.

can be expected to provide very good results even if the

3. Larger sample sizes are recommended if the distributions of the populations are

highly skewed

or contain

outliers .

4. Smaller sample sizes should only be used if the analyst is satisfied that the distri-

butions of the populations are at least

Notes + Comments

approximately normal

1. How to make inferences about the difference between two population means when

o1 and o3 are equal and unknown (

)?

01 =09 =0

2. Based on above assumption, the two sample standard deviations are combined to

provide the following pooled sample variance:

S

2
p

(n1 —1)s? + (ng — 1)s3

n1+n2—2

(112-2) #ste (2)
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3. The t test statistic becomes

(1 — T2) — Dy
141

p n1 no

and has n; +n,—2  degrees of freedom. At this point, the computation of the

t =

S

p-value and the interpretation of the sample results are identical to the procedures

discussed earlier in this section.

4. A difficulty with this procedure is that the assumption that the two population
standard deviations are equal is usually difficult to  verify . Unequal population

standard deviations are frequently encountered.

5. Using the pooled procedure may not provide satisfactory results, especially if the

sample sizes n; and ng are  quite different

6. The t procedure that we presented in this section does not require the assumption
of equal population standard deviations and can be applied whether the popula-
tion standard deviations are equal or not. It is a more general procedure and is

recommended for most applications.

10.3 Inferences About The Difference Between Two
Population Means: Matched Samples

1. Matched.

(a) Suppose employees at a manufacturing company can use two different methods
to perform a production task. To maximize production output, the company
wants to identify the method with the smaller population mean completion

time.

b) Let denote the population mean completion time for production method
o
I and denote the population mean completion time for production
method 2.

(112-2) %;E%-i—% (:) February 19, 2024
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(¢) With no preliminary indication of the preferred production method, we begin
by tentatively assuming that the two production methods have the same popu-

lation mean completion time. Thus, the null hypothesisis  Hy : pi;—pp = 0

(d) If this hypothesis is rejected, we can conclude that the population mean com-
pletion times differ. In this case, the method providing the smaller mean

completion time would be recommended.

(e) The null and alternative hypotheses are written as follows.

Ho:pp — pe =0, Hy iy — pg #0

2. In choosing the sampling procedure that will be used to collect production time
data and test the hypotheses, we consider two alternative designs. One is based on

independent samples  and the other is based on  matched samples

(a) Independent sample design: A simple random sample of workers is selected

and each worker in the sample uses method 1. A second independent simple
random sample of workers is selected and each worker in this sample uses
method 2. The test of the difference between population means is based on

the procedures in Section 10.2.

(b) Matched sample design: One simple random sample of workers is selected.

Each worker first uses one method and then uses the other method. The order
of the two methods is assigned randomly to the workers, with some workers
performing method 1 first and others performing method 2 first. Each worker
provides  a pair of data values , one value for method 1 and another value

for method 2.

3. In the matched sample design the two production methods are tested under sim-
ilar conditions (i.e., with the same workers); hence this design often leads to a

smaller sampling error ~ than the independent sample design. The primary rea-

son is that in a matched sample design, variation between workers  is elimi-

nated because the same workers are used for both production methods.

4. Assuming the analysis of a matched sample design is the method used to test the

difference between population means for the two production methods. The key

(112—2) %}EE‘*’% (:) February 19, 2024
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to the analysis of the matched sample design is to realize that we consider only

the column of differences, d;

5. Therefore, we have six data values (0.6, —0.2,0.5,0.3,0.0, and 0.6) that will be used

to analyze the difference between population means of the two production methods.

6. Let p, is the mean of the difference in values for the population of workers.

With this notation, the null and alternative hypotheses are rewritten as follows.

Hy:pg =0, H,:pg#0

7. Assume the population of differences has a  normal distribution. This

assumption is necessary so that we may use the ¢ distribution  for hypothesis

testing and interval estimation procedures. Based on this assumption, the following

test statistic has a ¢ distribution with n—1  degrees of freedom.

8. Test Statistic for Hypothesis Tests Involving Matched Samples

f— d— Hd
Sa/ /1
where -
CZ: Z dq' : and Sq = Z(di B d)z (10_9)
n n—1
2 QUESLION ...\ e (p498)

(Table 10.3) (Matched Example). A random sample of six workers is used. The
data on completion times for the six workers are given in Table 10.3. Note that each
worker provides a pair of data values, one for each production method. Also note
that the last column contains the difference in completion times d; for each worker
in the sample. Assume that the population of differences has a normal distribution.
Test the hypotheses Hy : ptg = 0 and H, : pg # 0, using a = 0.05. Compute the test
statistic, the p-value and draw a conclusion. Compute the 95% confidence interval
for the difference between the population means of the two production methods. If

H, is rejected, we can conclude that the population mean completion times differ.

(112—2) %ﬁgﬁ'%ﬂ (:) February 19, 2024
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TABLE 10.3 Task Completion Times for a Matched Sample Design

Completion Time Completion Time Difference in
for Method 1 for Method 2 Completion
Worker (minutes) (minutes) Times (d)

1 6.0 5.4 o)

2 5.0 582 =72

2 7.0 6.5 o)

4 6.2 59 o)

5 6.0 6.0 .0

6 6.4 5.8 o)

sol:

Area in Upper Tail‘ 0.20 0.10 0.05 0.025 0.01 0.005
t-Value (5 df) ‘0.920 1.476 2.015 2.571 3.365 4.032

(112-2) #EtE (D) February 19, 2024
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10.4 Inferences About The Difference Between Two

Population Proportions

1. Letting p, denote the proportion for population 1 and  p, denote the

proportion for population 2.

2. Consider inferences about the difference between the two population proportions:
pi—p2 -

3. To make an inference about this difference, we will select two independent random

samples consisting of n; units from population 1 and ny units from population 2.

Interval Estimation of p;—p-

1. Tax Preparation Firm

A tax preparation firm is interested in comparing the quality of work at two of
its regional offices. By randomly selecting samples of tax returns prepared at each
office and verifying the sample returns’ accuracy, the firm will be able to estimate
the proportion of erroneous returns prepared at each office. Of particular interest

is the difference between these proportions.

(a) pp: proportion of erroneous returns for population 1 (office 1)
(b) pa: proportion of erroneous returns for population 2 (office 2)
(c) p : sample proportion for a simple random sample from population 1
(d) p, : sample proportion for a simple random sample from population 2

2. Point Estimator of the Difference Between Two Population Proportions

D1 — D2 = D1 — P2 (10.10)

3. Thus, the point estimator of the difference between two  population  proportions

is the difference between the  sample proportions of two independent simple

random samples.

4. As with other point estimators, the point estimator p;—p, has a sampling distribu-

tion that reflects the possible values of p;—ps if we repeatedly took two independent

(112-2) %;E%-i—% (:) February 19, 2024
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random samples. The mean of this sampling distribution is  p;—p, and the
standard error of p;—py is:

Standard Error of p; — ps

pil—=p1) Pl —p
Op1—pa = \/ 1( ) 1) + 2( / 2> (10.11)
1 o)
5. If the sample sizes are large enough that  n;p; . ni(1—p;) , mnops , and
no(1—po)  are all greater than or equal to 5, the sampling distribution of

p1—p2 can be approximated by a  normal  distribution.

6. With the sampling distribution of p;—ps approximated by a normal distribution,

we would like to use  z, 505 5,  as the margin of error.

7. However, o5, _5, given by equation (10.11) cannot be used directly because the two
population proportions, p; and p,, are unknown. Using the sample proportion p;

to estimate p; and the sample proportion p, to estimate ps, the margin of error is:

Margin of error = ZQ/Z\/M(l —p) + P21 — ) (10.12)
nq %)
8. Interval Estimate of the Difference Between Two Population Proportions
p1(1 —p pa(1 — P
(1 —pz):tza/z\/pl( n) +“( P2) (10.13)
n1 %)

where 1—q is the confidence coefficient.

€ QUESLION ... (p504)

(Tax Preparation Example) We find that independent simple random samples

from the two offices provide the following information.

Office 1 2
n; 250 300

Number of returns with errors 35 27

Find a margin of error and interval estimate of the difference between the two

population proportions. and 90% confidence interval.

(112—2) %}EE‘*’% (:) February 19, 2024



Chapter 10 Inference About Means and Proportions with Two Populations  Page 20/22

sol:

Hypothesis Tests About p;—p»

1.

2.

4.

Let us now consider hypothesis tests about no difference between the proportions

of two populations. In this case, the three forms for a hypothesis test are as follows:

Hy:pi—p2 >0, Hy:pi —p2 <0, Hy:pr—p2=0
H,:p1—py<0 H,:pyr—p2>0 Hy:p—ps#0

When we assume [ is true as an equality , we have p;—py = 0, which is the

same as saying that the population proportions are equal, p; = ps.

Under the assumption Hj is true as an equality, the population proportions are equal

and p, =p,=p . In this case, o5 _5, becomes Standard Error of p, — p,

when p; =p, =p

1-— 1-— 1 1
Opy—py = \/pl( p)  pal=ps) \/])(1 — ) ( + ) (10.14)
n na ny N9

With p unknown, we pool, or combine, the point estimators from the two samples

(p1 and py) to obtain a single point estimator of p as follows:

Pooled Estimator of p When p; =p, =p

b= nip1 + NaPs (10_15)

ny + no

This pooled estimator of p is a weighted average of p; and ps.
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5. Substituting p for p in equation (10.14), we obtain an estimate of the standard error

of p1—po. This estimate of the standard error is used in the test statistic.

6. The general form of the test statistic for hypothesis tests about the difference be-

tween two population proportions is the point estimator divided by the estimate of
Op1—pa-

7. Test Statistic for Hypothesis Tests About p; — ps

- PP (10.16)

\/p(l -p) (L +4)

This test statistic applies to large sample situations where nip;, ni1(1—p1), nope,

and ny(1—p9) are all greater than or equal to 5.
2 QUESLION ... (p506)

(Tax Preparation Firm Example) Assume that the firm wants to use a hypoth-
esis test to determine whether the error proportions differ between the two offices.
A two-tailed test is required. Use a = 0.10 as the level of significance. State the
null and alternative hypotheses. Compute the test statistic, and the p-value for this

two-tailed test. State the decison rule and draw a conclusion.

sol:
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© EXERCISES

a N

10.1 : 1,2, 4,6

10.2 : 9, 10, 13, 14, 15
10.3 : 19, 23, 24
10.4 : 28, 29, 31, 34

SUP : 38, 39, 44
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GEtE (7))

Anderson’s Statistics for Business & Economics (14/E)

Chapter 11: Inferences About Population Variances I

ERRIGEMES: 10 D56, BEE 260306
RN 2EH (BUBUARBHRETEZREBIZE)
HEBMIE: http://www.hmwu. idv.tw

EN & B8 "3

Overview

1. Examine methods of statistical inference involving  population variances

2. Production Process of Filling Containers

(a) Consider the production process of filling containers with a liquid detergent

product. The filling mechanism for the process is adjusted so that the mean

filling weight  is 450 grams per container.

(b) Although a mean of 450 grams is desired, the  variance  of the filling
weights is also critical. That is, even with the filling mechanism properly
adjusted for the mean of 450 grams, we cannot expect every container to have

exactly 450 grams.

(c¢) By selecting a sample of containers, we can compute a  sample variance

for the number of grams placed in a container. This value will serve as an
estimate  of the variance for the population of containers being filled by

the production process.
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(d) If the sample variance is modest, the production process will be continued.

However, if the sample variance is excessive, overfilling and underfilling

may be occurring even though the mean is correct at 450 grams.
(e) In this case, the filling mechanism will be readjusted in an attempt to _ reduce

the filling variance for the containers.

3. In the first section we consider inferences about the variance of a  single  popu-
lation. Subsequently, we will discuss procedures that can be used to make inferences

about the variances of two  populations.

11.1 Inferences About a Population Variance

1. The sample variance

2 Z?:l(*/lji _j)Q (111)

ST =
n—1

is the point estimator of the population variance o2. In using the sample variance as
a basis for making inferences about a population variance, the sampling distribution

of the quantity  (n — 1)s?/0?  is helpful.

2. Sampling Distribution of (n — 1)s*/0?
Whenever a simple random sample of size n is selected from a  normal  popu-
lation, the sampling distribution of

(n—1)s?

. (11.2)

g

is a  chi-square  distribution with n —1 degrees of freedom (denoted by
X’(n=1) or x2, )

3. fE7TaRAR:

(a) Chi-squared distribution: https://en.wikipedia.org/wiki/Chi-squared_

distribution
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(b) Theorem: X, X5, -, X, are observations of a random sample of size n from
the normal distribution N(u,0?). X is the sample mean and S? is the sample

variance. Then

i. X and S? are independent.
L (n—1)8% 3 (X — X)?
ii. 72 = ! 72 ~ XQ(” - 1)
(:EAE %8 #2) Sampling Distribution of Sample Variance: https://online.

stat.psu.edu/stat414/lesson/26/26.3

4. (Figure 11.1) shows some possible forms of the sampling distribution of (n—1)s? /o2
Because the sampling distribution of (n — 1)s®/0? is known to have a chi-square
distribution whenever a simple random sample of size n is selected from a normal

population, we can use the chi-square distribution to develop interval estimates

and conduct  hypothesis tests ~ about a population variance.

FIGURE 11.1 Examples of the Sampling Distribution of (n — 1)s%/c?

(A Chi-Square Distribution)

With 2 degrees of freedom

With 5 degrees of freedom

With 10 degrees of freedom

(n—1)s*

0 ]

Interval Estimation

1. Suppose that we are interested in estimating the population variance for the produc-
tion filling process. A sample of 15 =20  containers is taken, and the sample

variance for the filling quantities is found to be s> =2.016 . However, we

know we cannot expect the variance of a sample of 20 containers to provide the

(112-2) #EtE (D) February 19, 2024
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exact value  of the variance for the population of containers filled by the pro-

duction process. Hence, our interest will be in developing an interval estimate for

the population variance.

2. (Figure 11.2) We will use the notation 2  a to denote the value for the chi-

square distribution that provides an area or probability of o to the right of

the x2 value.

(a) the chi-square distribution with 19 degrees of freedom is shown with 2 .. = 32.852

indicating that 2.5% of the chi-square values are to the right of 32.852, and

(b) X245 =8.907  indicating that 97.5% of the chi-square values are to the
right of 8.907.

FIGURE 11.2 A Chi-Square Distribution with 19 Degrees of Freedom

.95 of the
025 possible ,1/2 value
025
X'z
0 8.907 32.852
X ,29?5 X }]25

3. (Table 11.1) Tables of areas or probabilities are readily available for the chi-square
distribution. Table 3 of Appendix B provides a more extensive table of chi-square

values.
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TABLE 11.1 Selected Values from the Chi-Square Distribution Table*

Area or
probability

Degrees
of Freedom

1

o W

9

10
11
12
13
14

15
16
iz
18
19

20
21
22
23
24

25
26
27
28
29

30
40
60
80
100

k)

.000
.020
115
297

.554
.872
1.239
1.647
2.088

2.558
3.053
3.571
4.107
4.660

5.229
5.812
6.408
7.015
7.633

8.260
8.897
9.542
10.196
10.856

11.524
12.198
12.878
13.565
14.256

14.953
22.164
37.485
53.540
70.065

TS

.001
.051
216
484

.831
[[*2317
1.690
2.180
2.700

3.247
3.816
4.404
5.009
5.629

6.262
6.908
7.564
8.231
8.907

9.591
10.283
10.982
11.689
12.401

13.120
13.844
14.573
15.308
16.047

16.791
24.433
40.482
57.153
74.222

.95

.004
.103
.352
711

1.145
1.635
2.167
2.733
3.325

3.940
4.575
5226
5.892
6.571

7.261
7.962
8.672
9.390
10.117

10.851
11.591
12.338
13.091
13.848

14.611
15.379
16.151
16.928
17.708

18.493
26.509
43.188
60.391
77.929

i

Area in Upper Tail
.90 .10 .05

.016 2.706 3.841
.21 4.605 5.991
.584 6.251 a8l
1.064 7.779 9.488

1.610 9236 11.070
2.204 10.645  12.592
2.833 12.017  14.067
3490 13.362  15.507
4.168 14.684  16.919

4.865 15.987  18.307
5.578 1i7:2750 19675
6.304 18.549  21.026
7.041 19.812 22.362
7.790  21.064  23.685

8.547 22307 24.996
9.312 23542 26296
10.085 24769  27.587
10.865  25.989  28.869
11.651 27.204 30.144

12.443 28412 31.410
13.240  29.615  32.671
14.041 30.813  33.924
14.848  32.007 35.172
15.659  33.196 36.415

16473 34382 37.652
17.292 35563 38.885
18.114 36741  40.113
18.939 37916  41.337
19.768  39.087  42.557

20.599 40256 43.773
29.051 51.805 55.758
46.459 74397 79.082
64.278 96578 101.879
82.358 118.498 124.342

*Note: A more extensive table is provided as Table 3 of Appendix B.

gt ()

.025

5.024
7.378
9.348
11.143

12.832
14.449
16.013
17.535
19.023

20.483
21.920
23.337
24736
26.119

27.488
28.845
30.191
31.526
32.852

34.170
35.479
36.781
38.076
39.364

40.646
41.923
43.195
44.461
45.722

46.979
59.342
83.298
106.629
129.561

.01

6.635
9.210
11.345
13.277

15.086
16.812
18.475
20.090
21.666

23.209
24725
26.217
27.688
29.141

30.578
32.000
33.409
34.805
36.191

37.566
38.932
40.289
41.638
42.980

44314
45.642
46.963
48.278
49.588

50.892
63.691
88.379
112.329
135.807
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4. From the graph in Figure 11.2 we see that 0.95, or 95%, of the chi-square values are

between and 72 .,; - Thatis, thereis a 0.95 probability of obtaining

2
X0.975

a x? value such that

2 22
X0.075 < X < Xo.025

5. We stated in expression (11.2) that (n — 1)s*/0? follows a chi-square distribution;

therefore we can substitute (n — 1)s?/0? for x? and write

(n—1)s? ‘
Xogrs < o2 < Xo.025 (11.3)

6. In effect, expression (11.3) provides an interval estimate in that .95, or 95%, of

all possible values  for (n — 1)s*/o? will be in the interval X2 -z to X3 g25-

7. We now need to do some algebraic manipulations with expression (11.3) to develop
an interval estimate for the population variance o?. Working with the leftmost
inequality in expression (11.3), we have

(n—1)s

, — 1)s?
Xoor5 < T2z = 0 Xpors < (n—1)s? = o < u

X0.975

(11.4)

8. Performing similar algebraic manipulations with the rightmost inequality in expres-

sion (11.3) gives
(n—1)s?

- < o (11.5)
X0.025

9. The results of expressions (11.4) and (11.5) can be combined to provide a 95%
confidence interval estimate for the population variance
(n—1)s?

2
X0.025

(n—1)s

<o’ <
X0.975

(11.6)

10. Production Process of Filling Containers Recall that the sample
of 20 containers provided a sample variance of s> = 2.016. With a sample size of
20, we have 19 degrees of freedom and 2 g, = 8.907 and x2 .5 = 32.852. Using
these values in expression (11.6) provides the following interval estimate for the
population variance of filling quantities:

(19)(2.016) _ , _ (19)(2.016)

1.166 < 0% < 4.300
32.852 8.907

(112—2) ,@EE‘*’% (:) February 19, 2024



Chapter 11 Inferences About Population Variances Page 7/17

11. Taking the square root of these values provides the following 95% confidence interval

for the population standard deviation.

1.080 < o < 2.074

12. Thus, we illustrated the process of using the  chi-square distribution to es-

tablish  interval estimates  of a population variance and a population standard

deviation.

13. (1 — @)% Confidence Interval Estimate of a Population Variance

n .2
(n 21)5 <o?<

Xu/Q Xflfcy/Q)

(n—1)s?

G

(11.7)

where the x? values are based on a chi-square distribution with n — 1 degrees of

freedom and where (1 — «) is the confidence coefficient.

Hypothesis Testing

1. Using o2 to denote the hypothesized value for the population variance, the
three forms for a hypothesis test about a population variance are as follows:
Hy: 0% > 02, Hy: 0% < 02, Hy: 0% = o}

C g2 o y2 C g2 s g2 c 52 L 42
Hy:0°<of, Hy:0°>05  Hy:0°#0;

2. These three forms are similar to the three forms used to conduct one-tailed and

two-tailed hypothesis tests about  population means and proportions

3. The procedure for conducting a hypothesis test about a population variance uses
the hypothesized value for the population variance o2 and the sample variance s

to compute the value of a (2  test statistic.

4. Test Statistic for Hypothesis Tests About a Population Variance Assuming

that the population has a normal distribution, the test statistic is:

n—1)s?
X’ = % (11.8)
99

where x? has a chi-square distribution with n — 1 degrees of freedom.
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5. After computing the value of the x? test statistic, either the  p-value  approach

or the critical value approach, may be used to determine whether the null

hypothesis can be rejected.

6. Like the t distribution table, the chi-square distribution table does not contain
sufficient detail to enable us to determine the p-value exactly. However, we can use

the chi-square distribution table to obtain  a range for the p-value

7. (Table 11.2)

TABLE 11.2  Summary of Hypothesis Tests About a Population Variance

Lower Tail Test Upper Tail Test Two-Tailed Test

Hy: 0% = o Hy: o? = o Hy: 0% = o
SREt e ot i Bl
. (n—1)s2 (n—1)s? (n— 1)s2
Test Statistic 2= e A= 2 = =
Rejection Rule: Reject Hy if Reject Hy if Reject Hy if
p-value Approach p-value = a p-value = a p-value = &
Rejection Rule: Reject H, if Reject Hy if Reject Hy if
Critical Value X=X Xz X = Xi-ar2
Approach or if
X=X

€0 QUESEION ...\ (p532)

(The St. Louis Metro Bus Example) The St. Louis Metro Bus Company
wants to promote an image of reliability by encouraging its drivers to maintain
consistent schedules. As a standard policy, the company would like arrival times
at bus stops to have low variability. In terms of the variance of arrival times, the
company standard specifies an arrival time variance of 4 or less when arrival times
are measured in minutes. The following hypothesis test is formulated to help the

company determine whether the arrival time population variance is excessive.

H,: 0% < 4, H,:0?>4

(112-2) #m=tE8 (2) February 19, 2024
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In tentatively assuming H is true, we are assuming that the population variance of
arrival times is within the company guideline. We reject H, if the sample evidence
indicates that the population variance exceeds the guideline. In this case, follow-up
steps should be taken to reduce the population variance. We conduct the hypothesis
test using a level of significance of o = 0.05. Suppose that a random sample of 24
bus arrivals taken at a downtown intersection provides a sample variance of s> = 4.9.
Assuming that the population distribution of arrival times is approximately normal.
Conduct a hypothesis testing and draw a conclusion using p-value approach and the

critical value approach, separately.

sol:

FIGURE 11.3 Chi-Square Distribution for the St. Louis Metro Bus Example

p-value

Area in Upper Tail 0.10 0.05 0.025 0.01
x? Value (23 df)  32.007 35.172 38.076 41.638
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Conduct a two-tailed test about a population variance by considering a situation
faced by a bureau of motor vehicles. Historically, the variance in test scores for
individuals applying for driver’s licenses has been o2 = 100. A new examination
with new test questions has been developed. Administrators of the bureau of motor
vehicles would like the variance in the test scores for the new examination to remain
at the historical level. To evaluate the variance in the new examination test scores,

the following two-tailed hypothesis test has been proposed.
Hy:0? =100, H,:0”# 100

Rejection of Hy will indicate that a change in the variance has occurred and suggest
that some questions in the new examination may need revision to make the variance
of the new test scores similar to the variance of the old test scores. A sample of
30 applicants for driver’s licenses will be given the new version of the examination.
We will use a level of significance a = 0.05 to conduct the hypothesis test. The
sample of 30 examination scores provided a sample variance s> = 162. Conduct a

hypothesis testing and draw a conclusion using p-value approach.

sol:

Area in Upper Tail 0.10 0.05 0.025 0.01
x? Value (29 df)  39.087 42.557 45.722 49.588
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11.2 Inferences About Two Population Variances

1. In some statistical applications we may want to compare the variances in product
quality resulting from two different production processes, the variances in assembly
times for two assembly methods, or the variances in temperatures for two heating

devices.

2. In making comparisons about the two population variances, we will be using data

collected from  two independent random samples , one from population 1 and

another from population 2. The two sample variances s? and s3 will be the basis

for making inferences about the two population variances o, and o,.

3. Sampling Distribution of s?/s2 When o7 = 03

Whenever independent simple random samples of sizes n; and ny are selected from

two  normal populations with equal variances the sampling distribution

of s?/s? isan__ [F  distribution with 1, — 1  degrees of freedom for the
numerator and n, — 1 degrees of freedom for the denominator; s? is the sample
variance for the random sample of n; items from population 1, and s3 is the sample
variance for the random sample of ny items from population 2.

82
% NF(TM — 1./”2 — 1)
52

4. 7R HB: The sampling distribution of ratio of variances is given by Prof. R.
A. Fisher in 1924. According to Prof. R. A. Fisher, the ratio of two independent
chi- square variates when divided by their respective degrees of freedom follows

F-distribution as

2 1 e
P = Xénl—l)/( 1 )’ Since X2 _ u’ therefore
X(n2,1)/<n2 - 1) o
F = ((n1 —1)s1/07)/(ny — 1) _ s2/a? o
((ng —1)s3/03)/(na — 1)  s3/03 (n1-1,n2-1)

If 02 = o3, then

F = 5~ F(n171,n271)

Therefore, the sampling distribution of ratio of sample variances follows F-distribution

with (ny — 1,ny — 1) degrees of freedom.
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5. (Figure 11.4) The F distribution is  not symmetric ~ and the F' values can

never be negative . The shape of any particular F' distribution depends on

its numerator and denominator degrees of freedom.

FIGURE 11.4 F Distribution with 20 Degrees of Freedom for the Numerator
and 20 Degrees of Freedom for the Denominator

.05

0 212
F.Dﬁ

6. (Table 11.3) We will use  F,,  to denote the value of F' that provides an area or
probability of a in the upper tail  of the distribution. For example, as noted
in Figure 11.4, F{05(20,20) = 2.12 denotes the upper tail area of 0.05 for an F

distribution with 20 degrees of freedom for the numerator and 20 degrees of freedom

for the denominator.
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TABLE 11.3 Selected Values from the F Distribution Table*

Area or
probability

0 12

a

Denominator Area in

Degrees of Upper Numerator Degrees of Freedom

Freedom Tail 10 15 20 25 30
10 .10 2.32 2.24 2.20 2107 22,1
.05 2.98 2.85 2.77 273 2, 71]

025 3.72 3.52 3.42 3.35 S5l

.01 4.85 4,56 4.41 4.31 4,25

15 .10 2.06 1.97 1.92 1.89 1.87
.05 2.54 2.40 2.33 2.28 2.25

025 3.06 2.86 2.76 2.69 2.64

.01 3.80 215 3.37 3.28 3.21

20 .10 1.94 1.84 1.79 1.76 1.74
.05 2.35 2.20 A1) 207 2.04

025 2.77 2.57 2.46 2.40 2.35

.01 3.37 3.09 2.94 2.84 2.78

25 .10 1.87 1.77 1.72 1.68 1.66
.05 2.24 2.09 2.01 1.96 1.92

025 2.61 2.41 2.30 273 2.18

.01 3.13 2.85 2.70 2.60 2.54

30 .10 1.82 1.72 1.67 1.63 1.61
.05 2.16 2.01 1.93 1.88 1.84

025 2.5 2.31 2.20 2.12 2.07

.01 2.98 2.70 2.55 2.45 2.39

*Note: A more extensive table is provided as Table 4 of Appendix B.

7. Let us show how the F' distribution can be used to conduct a hypothesis test about
the variances of two populations. We begin with a test of the equality of two

population variances. The hypotheses are stated as follows.

L2 2 .2 2
Hy:o0i{=05; , H, :oi # 05

8. The procedure used to conduct the hypothesis test requires two independent random
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10.

11.

samples, one from each population. The two sample variances are then computed.
We refer to the population providing the larger sample variance as population 1.
Thus, a sample size of 17,  and a sample variance of s?  correspond to pop-
ulation 1, and a sample size of 1n, and a sample variance of s?  correspond

to population 2.

Test Statistic for Hypothesis Tests About Population Variances With
2 2
01 = 03

Based on the assumption that both populations have a  normal  distribution,

the ratio of sample variances provides the following F' test statistic:

5?2
F = —; (11.10)
52
Denoting the population with the larger sample variance as population 1, the test
statistic has an F' distribution with n, — 1 degrees of freedom for the numerator and

no — 1 degrees of freedom for the denominator.

Because the F' test statistic is constructed with the  larger sample variance s?

in the numerator, the value of the test statistic will be in the = upper tail ~ of the
F' distribution.

(Table 11.4) A summary of hypothesis tests about two population variances.

TABLE 11.4 Summary of Hypothesis Tests About Two Population Variances

Upper Tail Test Two-Tailed Test
Hy: 0f =03 Hy: o = o3
Hypotheses Al H.: o? # o2

Note: Population 1
has the larger
sample variance

Test Statistic ] .
2 2
Sz 52
Rejection Rule: Reject H, if Reject H, if
p-value p-value = a p-value = a
Rejection Rule: Reject H, if Reject H, if
Critical Value [FEsE, F=F,,
Approach
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€ QUESLION ..o (p539)

(Dullus County Schools Example) Dullus County Schools is renewing its school
bus service contract for the coming year and must select one of two bus companies,
the Milbank Company or the Gulf Park Company. We will use the variance of
the arrival or pickup/delivery times as a primary measure of the quality of the bus
service. Low variance values indicate the more consistent and higher-quality service.
If the variances of arrival times associated with the two services are equal, Dullus
School administrators will select the company offering the better financial terms.
However, if the sample data on bus arrival times for the two companies indicate a
significant difference between the variances, the administrators may want to give
special consideration to the company with the better or lower variance service. The

appropriate hypotheses follow.
Hy:0? =03 H,:0l# o5

If Hy can be rejected, the conclusion of unequal service quality is appropriate. We
will use a level of significance of & = 0.10 to conduct the hypothesis test. A sample
of 26 arrival times for the Milbank service provides a sample variance of 48 and a
sample of 16 arrival times for the Gulf Park service provides a sample variance of
20. Because the Milbank sample provided the larger sample variance, we will denote
Milbank as population 1. Use the p-value approach or the critical value approach

to obtain the hypothesis testing conclusion.

sol:

Area in Upper Tail 0.10 0.05 0.025 0.01
F Value (df; = 25, dfy = 15) 1.89 2.28 2.69 3.28
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€ QUESLION ..o (p541)

A one-tailed F test about the variances of two populations by considering a public
opinion survey. Samples of 31 men and 41 women will be used to study attitudes
about current political issues. The researcher conducting the study wants to test
to see whether the sample data indicate that women show a greater variation in
attitude on political issues than men. In the form of the one-tailed hypothesis test
given previously, women will be denoted as population 1 and men will be denoted

as population 2. The hypothesis test will be stated as follows.

A rejection of Hy gives the researcher the statistical support necessary to conclude
that women show a greater variation in attitude on political issues. The survey
results provide a sample variance of s? = 120 for women and a sample variance of

s2 = 80 for men. Use a level of significance o = 0.05 to conduct the hypothesis test.

sol:

(112-2) %;E%-i—% (:) February 19, 2024



Chapter 11 Inferences About Population Variances Page 17/17

© EXERCISES

4 N

11.1 : 2, 3,5, 9, 10

11.2 : 14, 15, 18, 19

SUP : 26, 29
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Overview

1. Consider cases in which the data are  categorical ~ by using a test statistic based

on the chi-square (2 ) distribution.

2. In cases in which data are not naturally categorical, we define  categories  and

consider the observation count in each category. These  chi-square tests are

versatile and expand hypothesis testing with the following applications.

(a) Testing the equality of population proportions for three or more populations.

(Chi-Square  Test of Homogeneity )

(b) Testing the independence of two categorical variables. (Chi-square Test of Independence

(c) Testing whether a probability distribution for a population follows a specific
historical or theoretical probability distribution. (Chi-Square Goodness of Fit Test )

(112-2) %;E%-i—% (:) February 19, 2024
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12.1 Testing the Equality of Population Proportions

for Three or More Populations

1. In this section, we show how the chi-square (x?) test statistic can be used to make

statistical inferences about the equality of population proportions for three or

more populations.

2. Using the notation
p; = population proportion for population 7,7 =1,2,3,---, k.

the hypotheses for the equality of population proportions for k£ > 3 populations are

as follows:

Ho: pr=py=---=p, , Hy:Not all population proportions are equal

(a) If the sample data  and the chi-square test computations indicate H, can-

not be rejected, we cannot detect a difference among the k£ population propor-

tions.

(b) However, if the sample data and the chi-square test computations indicate Hy

can be rejected, we have the statistical evidence  to conclude that not all &

population proportions are equal; that is, one or more population proportions

differ from the other population proportions.

(¢) Further analyses can be done to conclude  which population proportion

or proportions are significantly different from others.

3. Organizations such as J.D. Power and Associates use the proportion of
owners likely to repurchase a particular automobile as an indication of customer

loyalty for the automobile. An automobile with a greater proportion of owners

likely to repurchase is concluded to have greater customer loyalty.

(a) Suppose that in a particular study we want to compare the customer loyalty for
three automobiles: Chevrolet Impala, Ford Fusion, and Honda Accord. The
current owners of each of the three automobiles form the three populations for

the study. The three population proportions of interest are as follows:
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p1 = proportion likely to repurchase an Impala for the population of

Chevrolet Impala owners.

p2 = proportion likely to repurchase a Fusion for the population of Ford

Fusion owners.

p3 = proportion likely to repurchase an Accord for the population of Honda

Accord owners.

(b) The hypotheses are stated as follows:

Hy: p =py=p3 , H,:Notall population proportions are equal

(¢) To conduct this hypothesis test we begin by taking a sample of owners from
each of the three populations. Thus we will have a sample of Chevrolet Impala

owners, a sample of Ford Fusion owners, and a sample of Honda Accord owners.

(d) Each sample provides  categorical data indicating whether the respon-

dents are likely or not likely to repurchase the automobile.

(e) (Table 12.1) The data for samples of 125 Chevrolet Impala owners, 200 Ford
Fusion owners, and 175 Honda Accord owners are summarized in Table 12.1.
TABLE 12.1 Sample Results of Likely to Repurchase for Three Populations
of Automobile Owners (Observed Frequencies)

Automobile Owners
Chevrolet Impala Ford Fusion Honda Accord  Total

Likely to Yes 69 120 123 312
Repurchase No 56 80 52 188
Total 125 200 175 500

(f) This table has two rows for the responses Yes and No and three columns,
one corresponding to each of the populations. The observed frequencies are
summarized in the six cells of the table corresponding to each combination of

the likely to repurchase responses and the three populations.

(g) The data in Table 12.1 are the observed frequencies for each of the six cells

that represent the six combinations of the likely to  repurchase  response

and the owner population.

(112-2) #m=tE (2) February 19, 2024



Chapter 12 Comparing Multiple Proportions, Test of Independence and Good-

P 4/28
ness of Fit age 4/

(h) If we can determine the expected frequencies under the assumption Hy is true,
we can use the chi-square test statistic to determine whether there is a signif-

icant difference between the _ observed — and  expected frequencies

(i) If a  significant difference  exists between the observed and expected fre-

quencies, the hypothesis Hy can be rejected  and there is evidence that

not all the population proportions are equal.
4. Expected frequencies for the six cells of the table are based on the following rationale.

(a) First, we assume that the null hypothesis  of equal population proportions

is true.

(b) Then we note that in the entire sample of 500 owners, a total of 312 owners
indicated that they were likely to repurchase their current automobile. Thus,

312/500 = 0.624  is the overall sample proportion of owners indicating

they are likely to repurchase their current automobile.

(c) If Hy : py = p2 = p3 is true, 0.624 would be the  best estimate of the

proportion responding likely to repurchase for each of the automobile owner

populations.

(d) So if the assumption of Hy is true, we would expect 0.624 of the 125 Chevro-

let Impala owners, or  0.624(125) = 78  owners to indicate they are likely

to repurchase the Impala. Using the 0.624 overall sample proportion, we
would expect  (0.624(200) = 124.8 of the 200 Ford Fusion owners and
0.624(175) = 109.2  of the Honda Accord owners to respond that they

are likely to repurchase their respective model of automobile.

5. Let us generalize the approach to computing expected frequencies by letting ¢,
denote the expected frequency for the cell in  row i and  column j  of the
table.

6. Note that 312 is the total number of Yes responses (row 1 total), 125 is the total
sample size for Chevrolet Impala owners (column 1 total), and 500 is the total

sample size. We can show

312
200

( Row 1 Total
1=

1 1 Total) =
Total Sample Size) (Column 1 Total) (

> (125) = 0.624 x 125 = 78
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7. Expected Frequencies under the Assumption H; is True

(Row ¢ Total)(Column j Total)

- (12.1)
Total Sample Size

eij =

8. (Table 12.2) Use equation (12.1) to verify the other expected frequencies:

TABLE 12.2 Expected Frequencies for Likely to Repurchase for Three
Populations of Automobile Owners if H, is True

Automobile Owners
Chevrolet Impala Ford Fusion Honda Accord  Total

Likely to Yes 78 124.8 109.2 312
Repurchase No 47 75.2 65.8 188
Total 125 200 175 500

9. Chi-Square Test Statistic

¢=33 (fis eueij)Q (12.2)

i v

where
fij = observed frequency  for the cell in row ¢ and column j.
eij = expected frequency  for the cell in row 7 and column j.

under the assumption Hj is true.

10. In a chi-square test involving the equality of k£ population proportions, the above test

statistic has a chi-square distribution with k-1 degrees of freedom ( ? ~ X%k—l) )

provided the expected frequency is 5 or more  for each cell.

11. (#7t &8 A) Why the test statistic for the chi-square test of homogeneity has a

chi-square distribution? See

(a) The Multinomial Distribution and the Chi-Squared Test for Goodness of Fit:
https://www.stat.berkeley.edu/~stark/SticiGui/Text/chiSquare.htm,

(b) 17.1 - Test For Homogeneity:
https://online.stat.psu.edu/stat415/lesson/17/17.1

12. (Table 12.3) Computation of the chi-square test statistic:
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TABLE 12.3 Computation of the Chi-Square Test Statistic for the Test of Equal

Squared Difference
Divided by
Expected Frequency

Observed Expected Squared
Likely to Automobile Frequency Frequency Difference Difference
Repurchase? Owner B e; H= G (fE= e,-j)2
Yes Impala 69 78.0 -9.0 81.00
Yes Fusion 120 124.8 -4.8 23.04
Yes Accord 123 109.2 13.8 190.44
No Impala 56 47.0 9.0 81.00
No Fusion 80 JESH2 4.8 23.04
No Accord 52 65.8 =-13.8 190.44

Total 500 500

Population Proportions

(f,_' - e,-J-

2/ e;

13. (Table 12.4) In order to understand whether or not the value of the test statistic
X? = 7.89

leads us to reject Hy : p1 = po = p3, you will need to understand

and refer to values of the chi-square distribution:

TABLE 12.4 Selected Values of the Chi-Square Distribution

Area or
probability
0 x2
Area in Upper Tail
Degrees
of Freedom A0 105 .025 .01
1 2.706 3.841 5.024 6.635
2 4.605 5E9.90 7.378 9.210
3 6.251 7.815 9.348 11.345
4 1.779 9.488 11.143 13.277
5 9.236 11.070 12.832 15.086
& 10.645 12.592 14.449 16.812
7 12.017 14.067 16.013 18.475
8 13.362 15.507 17.535 20.090
9 14.684 16.919 19.023 21.666
10 15.987 18.307 20.483 23.209
11 17.275 19.675 21.920 24.725
12 18.549 21.026 23.337 26.217
13 19.812 22.362 24.736 27.688
14 21.064 23.685 26119 29.141
15 22.307 24.996 27.488 30.578

.005

7.879
10.597
12.838
14.860
16.750

18.548
20.278
21.955
23.589
25.188

26.757
28.300
29.819
31.319
32.801

(a) Since the expected frequencies shown in Table 12.2 are based on the assumption

that Hy : p1 = pa = ps is true, observed frequencies, f;;, that are in agree-
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ment with expected frequencies, e;;, provide  small values of (f;; — e;;)?

in equation (12.2). If this is the case, the value of the chi-square test statistic

will be relatively small and Hy  cannot be rejected

(b) On the other hand, if the differences between the observed and expected fre-
quencies are large, values of (f;;—e;;)? and the computed value of the test
statistic will be  large . In this case, the null hypothesis of equal popula-

tion proportions  can be rejected

(¢) Thus a chi-square test for equal population proportions will always be an

upper tail test ~ with rejection of Hy occurring when the test statistic is in

the upper tail of the chi-square distribution. (Reject Hy if 2 > X(Qy,kfl )

(d) We can use the upper tail area of the appropriate chi-square distribution and
the  p-value  approach to determine whether the null hypothesis can be

rejected.

14. In the automobile brand loyalty study, the three owner populations indi-
cate that the appropriate chi-square distribution has kt—1=3—-1=2  degrees

of freedom.

chi-square distribution table
Area in Upper Tail| 0.10 0.05 0.025 0.01 0.005
X2 Value (2 df) |4.605 5.991 7.378 9.210 10.597

(a) (The p-value approach) We see the upper tail area at (> =7.89  is be-

tween  (.025 and (0.01 . Thus, the corresponding upper tail area or
p-value  must be between _ 0.025 and _ 0.01 . (Software: p-value
= 0.0193)

(b) With  p-value < 0.05 , wereject Hy and conclude that the three population

proportions are not all equal and thus there is a difference in brand loyalties

among the Chevrolet Impala, Ford Fusion, and Honda Accord owners.

(¢) (The critical value approach) With o = 0.05 and 2 degrees of freedom, the
critical value for the chi-square test statistic is X(Q).%’Q = 5.991. The upper tail

rejection region becomes

Reject Hp if 2 > 5.991
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With 7.89 > 5.991, we reject Hy.

(d) Thus, the p-value approach and the critical value approach provide the same

hypothesis-testing conclusion.

15. A Chi-Square Test for the Equality of Population Proportions for k£ > 3

Populations

(1) State the null and alternative hypotheses

Hy: pi=py=---=p. , Hy:Not all population proportions are equal
(2) Set the level of significance o . Select a random sample from each of the
populations and record the observed frequencies,  f;; ,in a table with 2 rows

and k columns. Assume the null hypothesis is true and compute the expected

frequencies, ¢;; .

(3) If e;>5Vi,j ,compute the test statistic:

fij — ei)?
= Zz( o )

(4) Rejection rule (Desicion rule):

i. p-value approach: Reject Hy if  p-value < o

ii. Critical value approach: Reject Hy if 2 > Xi,k,—l

(5) Make decision.

(6) Draw conclusion with respect to the problem.

A Multiple Comparison Procedure

1. Since the chi-square test indicated that not all population proportions are equal, it

is reasonable for us to proceed by attempting to  determine where differences

among the population proportions exist.
2. Begin by computing the three sample proportions as follows:

Brand Loyalty =~ Sample Proportions
Chevrolet Impala p; = 69/125 = 0.5520
Ford Fusion  p, = 120,/200 = 0.6000
Honda Accord ps = 123/175 = 0.7029
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3. For this we will rely on a  multiple comparison  procedure that can be used to

conduct statistical tests between all pairs of population proportions. In the follow-

ing, we discuss a multiple comparison procedure known as the ~ Marascuilo procedure

4. We begin by computing the  absolute value of the pairwise difference between

sample proportions for each pair of populations in the study:
e Chevrolet Impala and Ford Fusion:
p1 — po|  =10.5520 — 0.6000| = 0.0480

e Chevrolet Impala and Honda Accord:
by — p3|  =10.5520 — 0.7029| = 0.1509

¢ Ford Fusion and Honda Accord:
Do — P3| = 10.6000 — 0.7029] = 0.1029

5. In a second step, we select a  level of significance ~ and compute the correspond-

ing  critical value  for each pairwise comparison using the following expression.

6. Critical Values for the Marascuilo Pairwise Comparison Procedure for K
Population Proportions:
For each pairwise comparison compute a critical value as follows:

' n;

nj

where

X2 = chi-square with a level of significance a and k-1 degrees of freedom

p; and p; = sample proportions for populations ¢ and j
n,; and n; = sample sizes for populations ¢ and j
7. Using the chi-square distribution in Table 12.4, k—1 = 3—1 = 2 degrees of freedom,
and a 0.05 level of significance, we have x§ 5, = 5.991. Now using the sample

proportions p; = 0.5520, p, = 0.6000, and p3 = 0.7029, the critical values for the

three pairwise comparison tests are as follows:

(a) Chevrolet Impala and Ford Fusion

0.5520(1 — 0.5520) _ 0.6000(1 — 0.6000
CVyg = \/5.991\/ 0 (125 520) n (200 ) _ 0.1380

(112—2) ,@EE‘*’% (:) February 19, 2024



Chapter 12 Comparing Multiple Proportions, Test of Independence and GOOdPage 10/28

ness of Fit

8.

10.

11.

(b) Chevrolet Impala and Honda Accord

0.5520(1 — 0.5520)  0.7029(1 — 0.7029
CVig = \/5-991\/ (125 ) + (175 ) =0.1379

(¢) Ford Fusion and Honda Accord

0.6000(1 — 0.6000 0.7029(1 — 0.7029
CVayg = \/5.991\/ ( ) + ( ) =0.1198

200 175
If the absolute value of any pairwise sample proportion difference  |p; — p;|  ex-
ceeds its corresponding critical value,  (C'V;; , the pairwise differenceis  significant

at the 0.05 level of significance and we can conclude that the two corresponding pop-

ulation proportions are different.

(Table 12.5) pairwise comparison procedure:

TABLE 12.5 Pairwise Comparison Tests for the Automobile Brand Loyalty Study

Significant if
Pairwise Comparison |p; — P;l cv; |p: — Bl > CV;
Chevrolet Impala vs. Ford Fusion .0480 .1380 Not significant
Chevrolet Impala vs. Honda Accord .1509 1379 Significant
Ford Fusion vs. Honda Accord .1029 1198 Not significant

The conclusion from the pairwise comparison procedure is that the only signifi-

cant difference in customer loyalty occurs between the Chevrolet Impala and the

Honda Accord. Our sample results indicate that the Honda Accord had a greater

population proportion of owners who say they are likely to repurchase the Honda
Accord. Thus, we can conclude that the Honda Accord ( ps = 0.7029) has a greater
customer loyalty than the Chevrolet Impala ( p; = 0.5520). The results of the study

are inconclusive as to the comparative loyalty of the Ford Fusion.

While the Ford Fusion did not show significantly different results when compared
to the Chevrolet Impala or Honda Accord, a larger sample may have revealed a
significant difference between Ford Fusion and the other two automobiles in terms

of customer loyalty.
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12. Tt is not uncommon for a multiple comparison procedure to show significance for
some pairwise comparisons and yet not show significance for other pairwise com-

parisons in the study.
13. (f78aE2HA) Why if |p; — p;| > CV;, the pairwise difference is significant?

o If Xj ~ B(ny,p1), we have E(X;) = nip; and Var(X;) = nipi(1 — p1).
X4
ni

=p1 = D1

o Similarly for Xy ~ B(ng, ps).
o E(p1—p2) =
« Var(pi —p2) =

o Under Hj : p; = po, test statistic: p; — Py

12.2 Test of Independence

1. An important application of a chi-square test involves using sample data to test

for the independence  of two  categorical  variables. For this test we take
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one sample from a population and record the observations for two categorical

variables.

2. We will summarize the data by counting the number of responses for each combi-

nation of a category for variable 1 and a category for variable 2.

3. The null hypothesis for this test is that the two categorical variables are independent.

Thus, the test is referred to as a  test of independence

4. A beer industry association conducts a survey to determine the prefer-
ences of beer drinkers for light, regular, and dark beers.

(a) A sample of 200 beer drinkers is taken with each person in the sample asked to
indicate a preference for one of the three types of beers: light, regular, or dark.
At the end of the survey questionnaire, the respondent is asked to provide

information on a variety of demographics including gender: male or female.

(b) A research question of interest to the association is whether preference for the

three types of beer is independent of the gender of the beer drinker.

(c) If the two categorical variables, beer preference and gender, are independent,
beer preference does not depend on gender and the preference for light, regular,

and dark beer can be expected to be the same for male and female beer drinkers.

(d) However, if the test conclusion is that the two categorical variables are not
independent, we have evidence that beer preference is associated or dependent

upon the gender of the beer drinker.

(e) As a result, we can expect beer preferences to differ for male and female beer
drinkers. In this case, a beer manufacturer could use this information to cus-
tomize its promotions and advertising for the different target markets of male

and female beer drinkers.
5. The hypotheses for this test of independence are as follows:

Hy : Beer preference is  independent  of gender

H, : Beer preference is  not independent  of gender

6. (Table 12.6) Since an objective of the study is to determine if there is difference be-

tween the beer preferences for male and female beer drinkers, we consider gender an
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explanatory variable  and follow the usual practice of making the explanatory

variable the column  variable in the data tabulation table. The beer preference

isthe categorical response variable and is shown as the row  variable. The

sample results of the 200 beer drinkers in the study are summarized in Table 12.6.

TABLE 12.6 Sample Results for Beer Preferences of Male and Female Beer
Drinkers (Observed Frequencies)

Gender
Male Female Total
Light 51 39 90
Beer Preference  Regular 56 21 77
Dark 25 8 33
Total 132 68 200

7. For the categorical variable gender, we see 132 of the 200 in the sample were male.

This gives us the estimate that  132/200 = 0.66, or 66% , of the beer drinker

population is male. Similarly we estimate that — 68/200 = 0.34, or 34% , of the

beer drinker population is female. Thus male beer drinkers appear to outnumber

female beer drinkers approximately 2 to 1.
8. Sample proportions or percentages for the three types of beer are

(a) Prefer Light Beer ~ 90/200 = 0.450, or 45.0%
(b) Prefer Regular Beer 77/200 = 0.385, or 38.5%

(c) Prefer Dark Beer 33/200 = 0.165, or 16.5%

9. Across all beer drinkers in the sample, light beer is preferred most often and dark

beer is preferred least often.

10. The computations and formulas used to determine if beer preference and gender
are independent are the same as those used for the chi-square test in Section 12.1.
Under the assumption that the beer preferences and gender are independent. Thus

the expected frequency for row ¢ and column j is given by

(Row 7 Total)(Column j Total)
Sample Size

11. (Table 12.7) expected frequencies
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TABLE 12.7 Expected Frequencies If Beer Preference Is Independent
of the Gender of the Beer Drinker
Gender

Male Female Total

Light 59.40 30.60 90

Beer Preference  Regular 50.82 26.18 77

Dark 21.78 7.2 33

Total 132 68 200

12. The chi-square test statistic.

X* = ZZ (fij e—ijeij)z (12.5)

13. With r rows and ¢ columns in the table, the chi-square distribution will have

(r-1)(e-1) degrees of freedom provided the expected frequency is  at least 5

for each cell.

14. (Table 12.8)

TABLE 12.8 Computation of the Chi-Square Test Statistic for the Test of Independence
Between Beer Preference and Gender

Squared Difference

Observed Expected Squared Divided by
Beer Frequency Frequency Difference Difference Expected Frequency

Preference Gender f; e; f.—e; (f; — eﬁjz (f;— e;jjzle;j
Light Male 51 59.40 —8.40 70.56 1.19
Light Female 39 30.60 8.40 70.56 2
Regular Male 56 50.82 5.18 26.83 153
Regular Female 21 26.18 -5.18 26.83 1.02
Dark Male 25 21.78 3.22 10.37 .48
Dark Female 8 11.22 =277 10.37 .92
Total 200 200 ¥ =645

15. The upper tail area of the chi-square distribution with 2 degrees of freedom:

Area in Upper Tail| 0.10 0.05 0.025 0.01 0.005
X% Value (2 df) |4.605 5.991 7.378 9.210 10.597
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16. Thus, we see the upper tail areaat  y? = 6.45 isbetween 0.05 and 0.025

and so the corresponding upper tail area or ~ p-value  must be between 0.05 and

0.025. With  p-value < .05 , we reject Hy and conclude that beer preference is

not independent of the gender of the beer drinker. (Software: p-value = .0398)

17. With o = 0.05 and 2 degrees of freedom, the critical value for the chi-square test

statistic is X(2)_05,2 = 5.991. The upper tail rejection region becomes

Reject Ho if 2 > \3 s, = 5.991

With 6.45 > 5.991, we reject Hy.

18. While we now have evidence that beer preference and gender are not independent,
we will need to gain additional insight from the data to assess the nature of the

association  between these two variables. One way to do this is to compute the

probability of the beer preference responses for males and females separately.

Beer Preference Male Female
Light 51/132 = 0.3864, or 38.64% |39/68 = 0.5735, or 57.35%
Regular 56/132 = 0.4242, or 42.42% |21/68 = 0.3088, or 30.88%
Dark 25/132 = 0.1894, or 18.94% 8/68 = .1176, or 11.76%

19. What observations can you make about the association between beer preference and
gender in the sample?
(a) For female beer drinkers, the highest preference is for light beer at 57.35%.
(b) For male beer drinkers, regular beer is most frequently preferred at 42.42%.

(c) While female beer drinkers have a higher preference for light beer than males,
male beer drinkers have a higher preference for both regular beer and dark

beer.

(d) (Figure 12.1) Data visualization through bar charts is helpful in gaining insight

as to how two categorical variables are associated.
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FIGURE 12.1 Bar Chart Comparison of Beer Preference by Gender
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20. Chi-Square Test for Independence of Two Categorical Variables

(1) State the null and alternative hypotheses.

Hy : The two categorical variables are independent,
H, : The two categorical variables are not independent
(2) Set a level of significance a.. Select a random sample from the population and
collect data for both variables for every element in the sample. Record the
observed frequencies, f;;, in a table with r rows and ¢ columns. The expected

frequencies must all be 5 or more for the chi-square test to be valid. Assume

the null hypothesis is true and compute the expected frequencies, e;;

(3) If the expected frequency, e;;, is 5 or more for each cell, compute the test

2 fij_eij2
T ZZ( ez’j>

statistic:

(4) Rejection rule:
i. p-value approach: Reject Hj if p-value < a.
ii. Critical value approach: Reject Hy if y? > Xi,(’r—l)(c—l)'
(5) Draw decision and conclusion.
21. Finally, if the null hypothesis of independence is rejected, summarizing the proba-

bilities as shown in the above example will help the analyst determine where the

association  or  dependence  exists for the two categorical variables.
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12.3 Goodness of Fit Test

1. In this section we use a chi-square test (goodness of fit tests) to determine whether

a population being sampled has a  specific probability distribution

(a) We first consider a population with a historical — multinomial  probability

distribution and use a  goodness of fit ~ test to determine if new sample

data indicate there has been a change in the population distribution compared

to the historical distribution.

(b) We then consider a situation where an assumption is made that a population
has a _ normal probability distribution and use a goodness of fit test to
determine if sample data indicate that the assumption of a normal probability

distribution is or is not appropriate.

Multinomial Probability Distribution

1. With a multinomial probability distribution, each element of a population is as-

signed to one and only one of three or more categories

2. Wikipedia: Multinomial distribution:
https://en.wikipedia.org/wiki/Multinomial distribution

3. Consider the market share study being conducted by Scott Marketing

Research.

(a) Over the past year, market shares for a certain product have stabilized at
30% for company A, 50% for company B, and 20% for company C. Since
each customer is classified as buying from one of these companies, we have a

multinomial probability distribution with three possible outcomes.
(b) The probability for each of the three outcomes is:

i. pa = probability a customer purchases the company A product
ii. pp = probability a customer purchases the company B product

iii. po = probability a customer purchases the company C' product

(c) Using the historical market shares, we have multinomial probability distribu-

tion with p4 = 0.30, pp = 0.50, and pe = 0.20.
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(d) Company C' plans to introduce a "new and improved” product to replace
its current entry in the market. Company C' has retained Scott Marketing
Research to determine whether the new product will alter or change the market

shares for the three companies.

(e) Specifically, the Scott Marketing Research study will introduce a sample of
customers to the new company C' product and then ask the customers to
indicate a preference for the company A product, the company B product, or

the new company C' product.

4. The hypothesis test to determine if the new company C product is likely to change

the historical market shares for the three companies.

Hy: py=0.30,p5 = 0.50, and pc = 0.20

H, : The population proportions are not py = 0.30,pg = 0.50, and pc = 0.20

5. The null hypothesis is based on the historical multinomial probability distribution
for the market shares. If sample results lead to the rejection of Hy, Scott Marketing
Research will have evidence to conclude that the introduction of the new company

C product will change the market shares.

6. Let us assume that the market research firm has used a consumer panel of 200
customers. Each customer was asked to specify a purchase preference among the
three alternatives: company A’s product, company B’s product, and company C’s

new product. The 200 responses are summarized:

Observed Frequency

Company A’s Product | Company B’s Product | Company C’s New Product
48 98 54

7. Perform a goodness of fit test that will determine whether the sample of 200 cus-

tomer purchase preferences is  consistent with  the null hypothesis.

8. Like other chi-square tests, the goodness of fit test is based on a comparison of
observed frequencies with the expected frequencies under the assumption that the

null hypothesis is true.
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9.

10.

11.

12.

The expected frequency for each category is found by multiplying the sample size

of 200 by the hypothesized proportion for the category:

Expected Frequency

Company A’s Product | Company B’s Product | Company C’s New Product
200(0.30) = 60 200(0.50) = 100 200(0.20) = 40

Test Statistic for Goodness of Fit

X = Z = 6.602 (12.6)

i=1

where
(a) fi = observed  frequency for category i
(b) e; = expected  frequency for category i

(C) k = the number of categories

Note: The test statistic has a chi-square distribution with £—1 degrees of freedom

provided that the expected  frequencies are 5 or more  for all categories.

The test for goodness of fit is always a one-tailed test with the rejection occurring

in the upper tail of the chi-square distribution:

Reject Ho if  \? > 2, |

(Table 12.9) Let us continue with the Scott Marketing Research example
and use the sample data to test the hypothesis that the multinomial population has
the market share proportions ps = 0.30, pg = 0.50, and pc = 0.20. We will use
an « = (.05 level of significance. We proceed by using the observed and expected

frequencies to compute the value of the test statistic.
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TABLE 12.9 Computation of the Chi-Square Test Statistic for the Scott Marketing Research
Market Share Study

Squared Difference

Page 20/28

Observed  Expected Squared Divided by
Hypothesized Frequency Frequency Difference Difference Expected Frequency
Category Proportion f. e f.—e (f. — e)? (f.— e)?le;
Company A .30 48 60 =12 144 2.40
Company B .50 98 100 =7 4 .04
Company C .20 54 40 14 196 4.90
Total 200 = 734

13. With the expected frequencies all 5 or more, the chi-square test statisticis y? = 7.34

We will reject the null hypothesis if the differences between the observed and ex-

pected frequencies are large.

14. The test statistic xy? = 7.34 is between 5.991 and 7.378. Thus, the corresponding up-

per tail area or p-value must be between (.05 and 0.025 . With  p-value < 0.05 ,

we reject Hy and conclude that the introduction of the new product by company C

will alter the historical market shares. (Software: p-value = 0.0255)

Area in Upper Tail| 0.10 .05 0.025 0.01 0.005
x? Value (2 df) |4.605 5.991 7.378 9.210 10.597

15. The critical value approach: with v = 0.05 and 2 degrees of freedom, the critical
value for the test statistic is x3,; = 5.991. The upper tail rejection rule becomes

Reject Hy if x? > x250 = 5.991 . With 7.34 > 5.991, we reject H,.

16. Now that we have concluded the introduction of a new company C' product will
alter the market shares for the three companies, we are interested in knowing more

about how the market shares are likely to change.

17. Using the historical market shares and the sample data, we summarize the data as

follows:
Company | Historical Market Share (%) | Sample Data Market Share (%)
A 30 48/200 = 0.24, or 24
B 20 98/200 = 0.49, or 49
C 20 54/200 = 0.27, or 27
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18. (Figure 12.2) This data visualization process shows that the new product will likely
increase the market share for company C'. Comparisons for the other two companies
indicate that company C’s gain in market share will hurt company A more than

company B.

FIGURE 12.2 Bar Chart of Market Shares by Company Before and After the
New Product for Company C

6r u Historical Market Share
5L u After New Product C
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19. Multinomial Probability Distribution Goodness of Fit Test

(1) State the null and alternative hypotheses.

i. Hy: The population _ follows a multinomial  probability distribution

with specified probabilities for each of the k categories

ii. H,: The population does not follow a multinomial distribution with the

specified probabilities for each of the k& categories

(2) Set alevel of significance o and select a random sample and record the  observed

frequencies f; for each category. Assume the null hypothesis is true and de-

termine the  expected frequency e; in each category by multiplying the

category probability by the sample size.

(3) If the expected frequency e; is at least 5 for each category, compute the value

of the test statistic. N

X2 _ Z (fi - €i)2

eA
i=1 g

(4) Rejection rule:
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i. p-value approach: Reject H if p-value < «
ii. Critical value approach: Reject Hy if x* > X2 ,_.

(5) Draw decision and conclusion.

Normal Probability Distribution

1. The goodness of fit test for a  normal  probability distribution is also based on

the use of the chi-square distribution.

2. In particular, observed frequencies for several categories of sample data are com-

pared to expected frequencies under the assumption that the population  has

a normal probability distribution.

3. Because the normal probability distribution is  continuous , we must modify the

way the categories  are defined and how the expected frequencies are computed.

4. (Table 12.10) Job applicant test data for Chemline, Inc.

TABLE 12.10 Chemline Employee Aptitude Test Scores for 50 Randomly
Chosen Job Applicants

&Ml 66 61 65 54 93
60 86 70 70 73 73
55 63 56 62 76 54
82 79 76 68 53 58
85 80 56 61 61 64
65 62 90 69 76 79
77 54 64 74 65 65
61 56 63 80 56 71
79 84

(a) Chemline hires approximately 400 new employees annually for its four plants
located throughout the United States. The personnel director asks whether a

normal distribution applies for the population of test scores.

(b) If such a distribution can be used, the distribution would be helpful in evalu-
ating specific test scores; that is, scores in the upper 20%, lower 40%, and so

on, could be identified quickly.
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(c) Hence, we want to test the null hypothesis that the population of test scores

has a normal distribution.

5. Calculations:

_ Sa; 3421
T = = = 68.42
n 50
— 10.
. Sz — )2 \/53 00369 _ 0\
n—1 49

6. Hypotheses about the distribution of the job applicant test scores:

(a) Hp: The population of test scores has a normal distribution with mean 68.42
and standard deviation 10.41

(b) H,: The population of test scores does not have a normal distribution with
mean 68.42 and standard deviation 10.41

7. (Figure 12.3) The hypothesized normal distribution:

FIGURE 12.3 Hypothesized Normal Distribution of Test Scores
for the Chemline Job Applicants

Standard Deviation
10.41

8. (Figure 12.4) Define the categories of test scores such that the expected frequen-

cies will be  at least five for each category. With a sample size of 50, one

way of establishing categories is to divide the normal probability distribution into

10 equal-probability intervals
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FIGURE 12.4 Normal Distribution for the Chemline Example
with 10 Equal-Probability Intervals
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9. With a sample size of 50, we would expect  five outcomes  in each interval or

category, and the rule of thumb for expected frequencies would be satisfied. Let us

look more closely at the procedure for calculating the category boundaries.

(a) With a continuous probability distribution, establish intervals such that each

interval has an expected frequency of  five or more

(b) First consider the test score cutting off the lowest  10%  of the test scores.
From the table for the standard normal distribution we find that the z value for
this test scoreis__—1.28 . Therefore, the test score of 1 = 68.42—1.28(10.41) = 55.10

provides this cutoff value for the lowest 10% of the scores.

(c) For thelowest 20%, wefind =~ = —0.84 ,andthus 2 = 68.42—0.84(10.41) = 59.68

(d) Working through the normal distribution in that way provides the following

test score values:
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10% —1.28 68.42 — 1.28(10.41) = 55.10
20% —.84 68.42 — .84(10.41) = 59.68
30% —.52 68.42 — .52(10.41) = 63.01
40% —25 68.42 — .25(10.41) = 65.82
50% .00 68.42 + 0(10.41) = 68.42
60% +.25 68.42 + .25(10.41) = 71.02
70% +.52 68.42 + .52(10.41) = 73.83
80% +.84 68.42 + .84(10.41) =77.16
90% +1:28 68.42 + 1.28(10.41) = 81.74

10. (Table 12.11) With the categories or intervals of test scores now defined and with
the known expected frequency of five per category, we can return to the sample data
of Table 12.10 and determine the observed frequencies for the categories. Doing so

provides the results in Table 12.11.

TABLE 12.11 Observed and Expected Frequencies for Chemline Job

Applicant Test Scores

Observed Expected

Frequency Frequency
Test Score Interval f, &;
Less than 55.10 5 5
55.10 to 59.68 5 5
59.68 to 63.01 g 5
63.01 to 65.82 =] 5
65.82 10 68.42 2 5
68.421071.02 5 5
71.02t073.83 2 5
73.83t077.16 5 5
77.16t0 81.74 5 5
81.74 and over 6 S
Total 50 50

11. (Table 12.12) The value of the test statistic is x* = 7.2.
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12.

13.

14.

15.

16.

TABLE 12.12 Computation of the Chi-Square Test Statistic for the

Chemline Job Applicant Example

Squared
Difference
Divided by
Observed Expected Squared  Expected
Test Score Frequency Frequency Difference Difference Frequency
Interval f e f—e (f—e)l (f—e)/e
Less than 55.10 5 5 0 0 .0
55.10 to 59.68 5 5 0 0 .0
59.68 to 63.01 9 5 4 16 7
63.01 to 65.82 6 5 1 1 2
65.82 t0 68.42 2 5 =) 2 1.8
68.42 10 71.02 5 5 0 0 .0
71.02 10 73.83 2 5 =Z) 9 1.8
73.83t077.16 5 5 0 0 .0
77.16 10 81.74 5 5 0 0 .0
81.74 and over 6 5 1 1 A
Total 50 50 ¥=72

Using the rule for computing the number of degrees of freedom for the goodness of

fit test, we have k—p—1=10—2—1=7  degrees of freedom based on k = 10

categories and p = 2 parameters (mean and standard deviation) estimated from the

sample data.

Suppose that we test the null hypothesis that the distribution for the test scores is

a normal distribution with a 0.10 level of significance.

To test this hypothesis, we need to determine the p-value for the test statistic
x? = 7.2 by finding the area in the upper tail of a chi-square distribution with 7
degrees of freedom. (Table 12.4) we find that y? = 7.2 provides an area in the
upper tail greater than 0.10. Thus, we know that the p-value is greater than 0.10.
(Software: p-value = 0.4084).

With  p-value > 0.10 , the hypothesis that the probability distribution for the

Chemline job applicant test scores is a normal probability distribution cannot be

rejected.
Normal Probability Distribution Goodness of Fit Test

(1) State the null and alternative hypotheses.

(112-2) #m=tE8 (2) February 19, 2024



Chapter 12 Comp?crigf Multiple Proportions, Test of Independence and GOOdPage 27/28
ness of Fi

Hy: The population has a normal  probability distribution.

H,: The population does  not have a normal  probability distribution.

(2) Set a level of significance and select a random sample and

(a) Compute the sample mean and sample standard deviation.

(b) Define k intervals of values so that the expected frequency is at _ least five

for each interval. Using equal probability intervals  is a good approach.

(¢) Record the observed  frequency of data values f; in each interval de-
fined.

(3) Compute the expected number of occurrences e; for each interval of values. Mul-

tiply the  sample size by the  probability ~ of a normal random variable

being in the interval.
(4) Compute the value of the test statistic.

k N2
XQ :Z (fz e‘el)

i=1 N

(5) Rejection rule:
i. p-value approach: Reject Hy if p-value < «
ii. Critical value approach: Reject Hy if x* > X2,

where p is the number of  parameters  of the distribution estimated by the

sample.

(6) Draw decision and conclusion.
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Overview

1. The statistical studies can be classified as either  experimental ~— or _ observational

2. In an experimental statistical study, an experiment is conducted to generate the
data.
(a) An experiment begins with identifying a  variable  of interest.

(b) Then one or more other variables, thought to be  related , are identified

and  controlled , and

(c) data are collected about how those variables  influence  the variable of

interest.

3. In an observational study, data are usually obtained through sample surveys

and not a controlled experiment.

4. Good design principles are still employed, but the rigorous  controls associated

with an experimental statistical study are often not possible.

(112-2) %;E%-i—% (:) February 19, 2024


http://www.hmwu.idv.tw

Chapter 13 Experimental Design and Analysis of Variance Page 2/25

D. In a study of the relationship between smoking and lung cancer the
researcher cannot assign a smoking habit to subjects. The researcher is restricted

to simply observing the effects of smoking on people who already smoke and the

effects of not smoking on people who do not already smoke.

6. In this chapter we introduce three types of experimental designs: a  completely

randomized  design, a  randomized block  design®, and a  factorial = ex-

periment*.

7. Analysis of variance ( ANOVA ) can analyze the results of regression studies

involving both experimental and observational data.

13.1 An Introduction to Experimental Design and

Analysis of Variance

1. Chemitech Inc. developed a new filtration system for municipal water

supplies.

(a) The industrial engineering group is responsible for determining the best as-
sembly method (method A, method B, and method C) for the new filtration

system.

(b) Managers at Chemitech want to determine which assembly method can pro-

duce the greatest number of filtration systems per week.

(¢) In the Chemitech experiment, assembly method is the  independent

variable or  factor .

(d) Because three assembly methods correspond to this factor, we say that three

treatments are associated with this experiment; each treatment corre-

sponds to one of the three assembly methods.

2. (single-factor experiment) The Chemitech problem is an example ofa  single-factor

experiment; it involves one  categorical ~ factor (method of assembly).
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3. More complex experiments may consist of multiple  factors; some factors may

be categorical and others may be quantitative.

4. (populations) The three assembly methods or treatments define the three  populations

of interest for the Chemitech experiment. One population is all Chemitech employ-
ees who use assembly method A, another is those who use method B, and the third

is those who use method C.

9. (objective) Note that for each population the dependent Or  response

variable is the number  of filtration systems assembled per week, and the pri-
mary statistical objective of the experiment is to determine whether the mean

number of units  produced per week is the same for all three populations (meth-
ods).

6. (experimental units) Suppose a random sample of three employees is selected
from all assembly workers at the Chemitech production facility. In experimental
design terminology, the three randomly selected  workers  are the experimental

units .

7. (completely randomized design) A completely randomized design requires

that each of the three assembly methods or treatments be assigned randomly to one

of the experimental units or workers.
(a) For example, method A might be randomly assigned to the second worker,
method B to the first worker, and method C to the third worker.
(b) Note that this experiment would result in only one measurement or number of

units assembled for each treatment.

8. (replicates) To obtain additional data for each assembly method, we must  repeat

or replicate  the basic experimental process.

(a) Suppose, for example, we selected 15 workers and then randomly as signed

each of the three treatments to 5 of the workers.

(b) Because each method of assembly is assigned to 5 workers, we say that  five replicates

have been obtained.

(Figure 13.1) the completely randomized design for the Chemitech experiment.
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FIGURE 13.1 Completely Randomized Design for Evaluating
the Chemitech Assembly Method Experiment

Employees at the plant in
Columbia, South Carolina

Random sample of 15 employees
is selected for the experiment

P

Each of the three assembly methods
is randomly assigned to 5 employees

/ D

Method A Method B Method C
n = 5 Ny = 5] ny=

Data Collection

1. Once we are satisfied with the experimental design, we proceed by collecting and
analyzing the data. In the Chemitech case, the employees would be instructed
in how to perform the assembly method assigned to them and then would begin

assembling the new filtration systems using that method.

2. (Table 13.1) After this assignment and training, the number of units assembled
by each employee during one week is as shown in Table 13.1. The sample means,
sample variances, and sample standard deviations for each assembly method are also

provided. From these data, method B appears to result in higher production

rates than either of the other methods.
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TABLE 13.1 Number of Units Produced by 15 Workers

Method

A B ©

58 58 48

64 69 57

55 &1 59

66 64 47

&7 68 49
Sample mean 62 b6 52
Sample variance 2745 26.5 31.0
Sample standard deviation 5.244 5.148 5.568

3. (question) is whether the three sample means observed are different enough for us
to conclude that the means of the populations corresponding to the three methods

of assembly are different.

4. Turn the question to Statistical terms: g1, po, 13 = mean number of units produced

per week using method A, B, C, respectively

5. Although we will never know the actual values of py, uo, and us, we want to use

the sample means to test the following hypotheses.

Hy:py = po = ps, H,: Not all population means are equal

6. The analysis of variance (ANOVA) is the statistical procedure used to deter-

mine whether the observed differences in the three sample means are large enough

to reject Hy.

Assumptions for Analysis of Variance

Three assumptions are required to use analysis of variance.

1. For each population, the response variable is  normally distributed

Implication: In the Chemitech experiment, the number of units produced per week

(response variable) must be normally distributed for each assembly method.

2. The variance of the response variable (0%) , is the same for all of the popula-

tions.
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Implication: In the Chemitech experiment, the variance of the number of units

produced per week must be the same for each assembly method.

3. The observations must be independent

Implication: In the Chemitech experiment, the number of units produced per week
for each employee must be independent of the number of units produced per week

for any other employee.

Analysis of Variance: A Conceptual Overview

1. If the means for the three populations are equal, we would expect the three  sample means

to be close together.

(a) The more the sample means _ differ , the stronger the evidence we have for

the conclusion that the population means  differ .

(b) If the wvariability =~ among the sample means is  “small,” it supports
Hy ;if the variability among the sample meansis  ”large ,” it supports
H, .

2. If the null hypothesis, Hy : u; = po = ps, is true, we can use the  variability among

the sample means to develop an estimate of 52 .

(a) If the assumptions for analysis of variance are satisfied and the null hypothesis
is true, each sample will have come from the same normal distribution

with mean 4 and variance g2 .

(b) (Chapter 7) the sampling distribution of the sample mean & for a simple ran-
dom sample of size n from a normal population will be normally distributed

with mean ;  and variance o%/n . ( X, ~ N(p,0%/n) )

(c) (Figure 13.2) if Hy is true, we can think of each of the three sample means,
T, = 62,75 = 66, and T3 = 52 from Table 13.1, as values drawn at random

from the sampling distribution shown in Figure 13.2.
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FIGURE 13.2 Sampling Distribution of x Given H, Is True

Sample means are “close
together” because there is only
one sampling distribution
when Hj is true

3. When the sample sizes are equal, as in the Chemitech experiment, the best estimate

of the mean of the sampling distribution of Zisthe _mean  or average of the

sample means . In the Chemitech experiment, an estimate of the mean of the

sampling distribution of Z is (62 + 66 + 52)/3 = 60 . We refer to this estimate

as the  overall sample mean

4. An estimate of the variance of the sampling distribution of Z, ¢2 , is provided

by the variance of the three sample means.

(62 — 60)% + (66 — 60)2 + (52 — 60)> 104

2
2 = D)
; 3—1 2
5. Because o, = o?/n , solving for o? gives
o’ = no?

Hence,

Estimate of 0% = n (Estimate of 02) =  ns2 = 5(52) = 260

6. The result, ns2 = 260, is referred to as the  between-treatments _ estimate of o2.

7. The between treatments estimate of o2 is based on the assumption that  Hj, is true

In this case, each sample comes from the same  population, and there is only

one  sampling distribution of z.
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8. Illustrate what happens when H is false, suppose the population means all ~ differ .

(a) Note that because the three samples are from  normal  populations with

different means, they will result in three  different  sampling distributions.

(b) (Figure 13.3) The sample means are not as close together as they were when
Hy was true. Thus, s2 will be larger, causing the between treatments estimate

of 0? to be larger .

FIGURE 13.3 Sampllng Dlstrlbutlons of x Given H, Is False

VINWAN

Sample means come from
different sampling distributions
and are not as close together when

H, is false

(c) In general, when the population means are not equal, the between treatments

estimate will  overestimate  the population variance o2.

(d) When a simple random sample is selected from each population, each of the

sample variances provides an  unbiased estimate of o2. Hence, we can
)

combine  or pool  the individual estimates of o into one overall es-

timate.

(e) The estimate of o2 obtained in this way is called the  pooled  or _ within-treatments

estimate of 2.

(f) Because each sample variance provides an estimate of o2 based only on the
variation within each sample, the within treatments estimate of o2 is not af-

fected by whether the population means are equal.

(g) When the sample sizes are equal, the within treatments estimate of 0 can be

obtained by computing the average  of the individual sample variances.
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9. For the Chemitech experiment we obtain

-
Within treatments estimate of o2 = 27.5+26.5+31.0 = 835 = 28.33

3

(a) The between treatments estimate of o2 (260) is much larger  than the

within treatments estimate of o2 (28.33).

(b) The ratio  of these two estimates is 260/28.33 = 9.18.

10. If the null hypothesis is  true

(a) The between treatments approach provides a  good  estimate of o

(b) The two estimates will be similar and their ratio will be close to 1

11. If the null hypothesis is  false

(a) The between treatments approach  overestimates o2

(b) the between treatments estimate will be larger than the within treatments

estimate, and their ratio will be  large .
12. In the next section we will show how large this ratio must be to reject Hy.

13. Summary: The logic behind ANOVA is based on the development of two indepen-

dent estimates of the common population variance 52 .

(a) One estimate of o2 is based on the variability =~ among  the sample means

themselves.

(b) The other estimate of o2 is based on the variability of the data  within

each sample.

(c) By comparing these two estimates of o2, we will be able to determine whether

the population means are equal.
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13.2

domized Design

Analysis of Variance and the Completely Ran-

1. How analysis of variance can be used to test for the equality of £ population means

for a  completely  randomized design.
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2. The general form of the hypotheses tested is

Ho: jpy=py=---=ypu. , Hg:Notall population means are equal

where 115 is mean of the jth population.

3. We assume that a simple random sample of size n; has been selected from

each of the & populations  or _ treatments

4. For the resulting sample data, let

(a) w;;: value of observation i for treatment j, i =1,2,---,n;, j=1,2,---k

(b) n;: number of observations for treatment j.
ng

(c) Z;: sample mean for treatment j, 7; = iy
i1 nj
2 : P Rt )
(d) sj: sample variance for treatment j, s = Z
J —1 TLJ' —1
(e) s;: sample standard deviation for treatment j
5. The overall sample mean, denoted 7 , is the sum of all the observations divided
by the total number of observations:
k 7Lj
_ - i1 T4s
5; — ijl ZL—:[ J (133)
nr
where np =nq +ng+ -+ +ny (13.4).
6. If the size of each sample is n, ny = kn; the overall sample mean is just the

average  of the & sample means.

k i k j -
_ Zj:l 2o i _ Zj:l >oily @i /n _ Zj‘:1 T

K1l

(13.5)

7. The overall sample mean can also be computed as a  weighted average  of the

k sample means.
N1T1 + Nolo + -+ - + NIy

Kl
Il

nr
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8. Each sample in the Chemitech experiment consists of n = 5 observations
(Table 13.1), we obtained the following result:

_ 62466+52

60
3

K

If the null hypothesis is true (u; = po = puz = p), the overall sample mean of 60 is

the best  estimate of the population mean pu.

Between-Treatments Estimate of Population Variance

1. A between treatments estimate of o2 when the sample sizes were equal.

(a) This estimate of o2 is called the  mean square due to treatments and
is denoted MSTR :

k N Y
MSTR = 2= :ﬂ<_731 7) (13.6)

(b) The numerator in equation (13.6) is called the  sum of squares  due to

treatments and is denoted SSTR .

c¢) The denominator, k—l, represents the degrees of freedom associated with
g

(d) Mean Square Due to Treatments

T
MSTR = SoTR (13.7)
k—1
where .
SSTR= > n;(z; - 7)° (13.8)

(e) If Hy is true, MSTR provides an _ unbiased _ estimate of o2. However, if the

means of the k£ populations are not equal, MSTR is not an unbiased estimate

of 02; in fact, in that case, MSTR should overestimate  o2.

(f) If each sample consists of n observations, equation (13.6) can be written as

N N
MSTR — n (T — z)? -, -1 (T — z)? — el
k—1 k—1 -
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2. For the Chemitech data in Table 13.1, we obtain the following results:

k
SSTR = > n(z; — 7)* = 5(62 — 60)> + 5(66 — 60)* + 5(52 — 60)* = __520
j=1

MSTR =

— = _ 260

Within-Treatments Estimate of Population Variance

1. A within treatments estimate of 02 when the sample sizes were equal.

(a)

This estimate of o2 is called the mean square due to error and is

denoted MSE :

k
Zj:l(nj - 1)5?

ny —k

MSE = (13.9)

The numerator in equation (13.9) is called the  sum of squares  due to

error and is denoted SSE .

The denominator of MSE is referred to as the degrees of freedom associated
with SSE.

Mean Square Due to Error

MsE = 9F (13.10)
ny —k
k
where SSE = Y “(n; - 1)s] (13.11)
j=1

Note that MSE is based on the variation within each of the treatments; it is
not influenced by whether the null hypothesis is true. Thus, MSE  always

provides an  unbiased estimate of o2

If each sample has n observations, ny = kn; thus, n,y—k = k(n—1) , and

equation (13.9) can be rewritten as

S - Y
k(n—1) k

MSE =

If the sample sizes are the same, M SE is the average of the £ sample variances

Note that it is the same result we used in Section 13.1 when we introduced the

concept of the within-treatments estimate of o2.
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2. For the Chemitech data in Table 13.1 we obtain the following results.

k
SSE = Y (nj—1)s]=(5-1)27.5+ (5 - 1)26.5+ (5 — 1)31 = _ 340
j=1

SSE 340 340
np—k 15—3 12 2833

Comparing the Variance Estimates: The F' Test

1. If the null hypothesis is  true , MSTR and MSE provide two independent, un-

biased estimates of 2.

2. (Chapter 11) For _ normal  populations, the sampling distribution of the ratio

of two independent estimates of o2 follows an F distribution.

3. Hence, if the null hypothesis is true and the ANOVA assumptions are valid, the
sampling distribution of A/ STR/MSFE  isan__ ' distribution with numer-

ator degrees of freedom equal to  k—1 and denominator degrees of freedom

equal to  np—k .

(a) If the null hypothesis is true, the value of M\ ST R/M SE should appear to have

been selected from this F distribution.

(b) If the null hypothesis is false, the value of MSTR/MSE will be  inflated

because MSTR overestimates o2.

4. Hence, we will reject Hy if the resulting value of MSTR/MSE appears to be

too large to have been selected from an F' distribution with £—1 numerator

degrees of freedom and ny—k denominator degrees of freedom.

5. Test Statistic for the Equality of K Population Means

MST
5 MSTR

(13.12)
MSE

6. The test statistic follows an F' distribution with k—1 degrees of freedom in the

numerator and np—k degrees of freedom in the denominator. ( F'~ F_ .., )

7. Let us return to the Chemitech experiment and use a level of significance
a = 0.05 to conduct the hypothesis test.
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(a) The value of the test statistic is

_ MSTR 260

F =
MSE 28.33

9.18

(b) The numerator degrees of freedom is k—1 = 3—1 = 2 and the denominator

degrees of freedom is np—k = 15—3 = 12.

(¢) Because we will only reject the null hypothesis for large values of the test
statistic, the p-value is the upper tail area  of the F distribution to the
right of the test statistic F' = 9.18.

(d) (Figure 13.4) shows the sampling distribution of /' = MSTR/MSE, the value
of the test statistic, and the upper tail area that is the p-value for the hypothesis

test.
FIGURE 13.4 Computation of p-Value Using the Sampling Distribution
of MSTR/MSE
Sampling distribution
of MSTR/MSE
p-value
MSTR/MSE
F=0.18

(e) (Table 4 of Appendix B) the upper tail of an F' distribution with 2 numerator

degrees of freedom and 12 denominator degrees of freedom.

Area in Upper Tail 0.10 0.05 0.025 0.01
F Value (df; =2, df; =12)|2.81 3.89 5.10 6.93

(f) (the p-value approach) Because F = 9.18 > (.93 , the area in the upper
tail at /' = 9.18 is less than 0.01. Thus, the p-value is less than 0.01 (Software:
p-value = 0.004.)

(g) With  pvalue< a =0.05 , Hy is rejected.

(h) (conclusion) The test provides sufficient evidence to conclude that the means

of the three populations are not equal. In other words, analysis of variance
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supports the conclusion that the population mean number of units produced

per week for the three assembly methods are not equal.

(i) (the critical value approach) With /"= 9.18 > Fg 5212 = 3.80 , and

conclude that the means of the three populations are not equal.

8. Test for the Equality of K Population Means

Hy : M1 = p2 = - = g
H,: Not all population means are equal
Test Statistic
_ MSTR
~ MSE

Rejection Rule

p-value approach : Reject Hy if p-value < «

Critical value approach : Reject Hy if F'> Fj, k1 np—k

ANOVA Table

1. (Table 13.2) The results of the preceding calculations can be displayed conveniently
in a table referred to as the analysis of variance or  ANOVA  table. The general

form of the ANOVA table for a completely randomized design is:

TABLE 13.2 ANOVA Table for a Completely Randomized Design

Source Sum Degrees Mean
of Variation =~ of Squares  of Freedom Square F p-value
SSTR MSTR
Treatments SSTR [2=1 MSTR = e MSE
Error SSE nr—k MSE = =3k
ny—k
Total SST nr—1

2. (Table 13.3) JMP /Excel output
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TABLE 13.3  Analysis of Variance Table for the Chemitech Experiment

Source Sum Degrees Mean

of Variation = of Squares  of Freedom  Square F p-value
Treatments 520 2 260.00 9.18 .004
Error 340 12 28.33

Total 860 14

3. Total sum of squares (SST):
(a) The sum of squares associated with the source of variation referred to as
"Total”  is called the total sum of squares (_ SST ).

(b) SST = SSTR+ SSE , and that the degrees of freedom associated with

this  total  sum of squares is the sum of the degrees of freedom associated

with the sum of squares due to  treatments  and the sum of squares due

to__error . ( np—1=(k—1) + (np—k) .)

(¢) We point out that SST divided by its degrees of freedom ny—1isthe  overall sample variance

that would be obtained if we treated the entire set of 15 observations as one

data set.

(d) With the entire data set as one sample, the formula for computing the total

sum of squares, SST, is

ng

SST = zk: > (wy; — 1) (13.13)

j=1 i=1

4. ANOVA can be viewed as the process of partitioning the total sum of squares and

the degrees of freedom into their corresponding sources:  treatments and error

Computer Results for Analysis of Variance

1. (Figure 13.5) JMP/Excel output for the Chemitech experiment:
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FIGURE 13.5 Output for the Chemitech Experiment Analysis of Variance

Source DE Adj SS Adj MS F-Value P-Value
Factor 2 520.0 260.00 9.18 004
Error i 340.0 28.33
Total 14 860.0
Model Summary
s R-sq R-sq (adj)
5.32291 60.47% 53.88%
Means
Factor N Mean StDev 95% CI1
Method A 3 62.00 5.24 (56.81, 67.19)
Method B 3 66.00 015 (60.81, 71.19)
Method C 3 52.00 S (46.81, 57.19)

Pooled StDev = 5.32291
|

2. The square root of MSE provides the best estimate of the population standard
deviation o. This estimate of ¢ in Figure 13.5 is Pooled StDev; it is equal to 5.323.

3. A 95% confidence interval estimate of the population mean for Method A.

Tkt (13.15)
n

where s is the estimate of the population standard deviation o. Because the best
estimate of ¢ is provided by the Pooled StDev, we use a value of 5.323 for ¢ in

expression (13.15).

4. The degrees of freedom for the ¢ value is 12, the degrees of freedom associated with

the error sum of squares. Hence, with g g5 = 2.179 we obtain

32
62 +2.179 5323 =62+5.19

V5

Thus, the individual 95% confidence interval for Method A goes from 62—5.19 =
56.81 to 62 + 5.19 = 67.19.
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Testing for the Equality of £ Population Means: An Observa-
tional Study

1. ANOVA can also be used to test for the equality of three or more population means

using data obtained from an  observational study

2. (Table 13.4) National Computer Products, Inc. (NCP) manufactures

printers and fax machines at plants located in Atlanta, Dallas, and Seattle. To
measure how much employees at these plants know about quality management, a
random sample of 6 employees was selected from each plant and the employees
selected were given a quality awareness examination. The examination scores for
these 18 employees are shown in Table 13.4. Managers want to use these data to

test the hypothesis that the mean examination score is the same for all three plants.

TABLE 13.4 Examination Scores for 18 Employees

Plant 1 Plant 2 Plant 3
Atlanta Dallas Seattle
85 71 59
75 75 64
82 73 62
76 74 69
il 69 75
85 82 67
Sample mean 79 74 66
Sample variance 34 20 32
Sample standard deviation 5.83 4.47 5.66

3. Define population 1 as all employees at the Atlanta plant, population 2 as all em-
ployees at the Dallas plant, and population 3 as all employees at the Seattle plant.

Let ,;  mean examination score for population j,7 =1,2,3

4. Want to use the sample results to test the following hypotheses:

Ho: 1= po = p3

H,: Not all population means are equal

5. Note that the hypothesis test for the NCP observational study is  exactly the same

as the hypothesis test for the Chemitech experiment.
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6. Even though the same ANOVA methodology is used for the analysis, it is worth
noting how the NCP observational statistical study differs from the Chemitech ex-

perimental statistical study.

7. The individuals who conducted the NCP study had no control  over how the

plants were assigned to individual employees. That is, the plants were already in
operation and a particular employee worked at one of the three plants. All that
NCP could do was to select a random sample of 6 employees from each plant and

administer the quality awareness examination.

8. To be classified as an  experimental study , NCP would have had to be able

to randomly select 18 employees and then assign the plants to each employee in a

random fashion.

13.3 Multiple Comparison Procedures

1. When we use analysis of variance to test whether the means of k populations are

equal,  rejection of the null hypothesis allows us to conclude only that the

population means are not all equal.

2. In some cases we will want to go a step further and determine where the differences

among means occur.

3. To show how  multiple comparison  procedures can be used to conduct statisti-

cal comparisons between pairs of population means.

Fisher’s LSD

1. Suppose that analysis of variance provides statistical evidence to  reject ~ the null

hypothesis of equal population means. Fisher’s least significant difference (LSD)

procedure can be used to determine where the differences occur.
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2. (Section 13.1) The Chemitech experiment. Using analysis of variance,
we concluded that the mean number of units produced per week are not the same

for the three assembly methods. In this case, the followup question is: We believe

the assembly methods differ, but where do the differences occur?

3. Fisher’s LSD Procedure

Ho: pi=p;  Ha:pi #py
Test Statistic -
t= i (13.16)
1,1
Rejection Rule \/MSE (”i + ”y)

e p-value approach: Reject Hy if p-value < a.

o Critical value approach: Reject Ho if ¢ < —t,,, Or > 1,

where the value of ¢,/ is based on a ¢ distribution with ny—k degrees of freedom.

£ QUESEION ...\ e (p616)

For the Chemitech experiment, apply Fisher’s LSD Procedure to determine
whether there is a significant difference between the means of population 1
(Method A) and population 2 (Method B) at the a = 0.05 level of significance.

sol:

Area in Upper Tail| 0.20 0.10 0.05 0.025 0.01 0.005
t Value (12 df) ]0.873 1.356 1.782 2.179 2.681 3.055

(112—2) %;E%-i—% (:) February 19, 2024



Chapter 13 Experimental Design and Analysis of Variance Page 22/25

4. Many practitioners find it easier to determine how large the difference between the

sample means must be to reject Hp. In this case the test statistic is 7, —z;

and the test is conducted by the following procedure.

5. Fisher’s LSD Procedure Based on the Test Statistic 7; — ;
Ho:pi=py, Ha:pi # 1y

Test Statistic
T — T,

Rejection Rule at a Level of Significance a Reject Hy if |z, —z;| > LSD where

LSD— 1, WSE (L5 e

n; n;

6. Confidence Interval Estimate of the Difference Between Two Population
Means Using Fisher’s LSD Procedure

(z; —x;) £ LSD (13.18)

where

LSD = ta/g\/MSE (1 + 1) (13.19)

n; n;

and t,/2 is based on a ¢ distribution with ny—Fk degrees of freedom.

7. If the confidence interval in expression (13.18) includes the value  zero , we

cannot reject the hypothesis that the two population means are equal.

8. However, if the confidence interval does not include the value zero, we conclude that

there is a difference between the population means.

€ QUESLION ... (p617)

For the Chemitech experiment, apply Fisher’s LSD Procedure based on the Test
Statistic Z; — Z; to determine whether there is a significant difference (a) between
the means of population 1 (Method A) and population 3 (Method C), (b) between
the means of population 2 (Method B) and population 3 (Method C) at the a =
0.05 level of significance. Find a 95% confidence interval estimate of the difference

between the means of populations 1 and 2 and make a conclusion.
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sol:

Type I Error Rates

1.

ANOVA gave us statistical evidence to reject or not reject the null hypothesis of

equal population means.

We showed how Fisher’s LSD procedure can be used in such cases to determine

where the differences occur. Technically, it is referred to as a  protected — or

restricted  LSD test because it is employed only if we first find a significant F’

value by using analysis of variance.

To see why this distinction is important in multiple comparison tests, we need to

explain the difference between a  comparisonwise Type I error rate and an

experimentwise Type I error rate.

In the Chemitech experiment we used Fisher’s LSD procedure to make three pairwise

comparisons.

Test 1 Test 2 Test 3
Ho:pr=pe Ho:pr=ps Ho:po=ps
Hy:pnxps Hytpn£ps He:pe # ps

In each case, we used a level of significance of a = 0.05.
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6.

10.

11.

12.

13.

Therefore, for each test , if the null hypothesis is true, the probability that we

will make a Type I error is a = 0.05; hence, the probability that we will not make

a Type I error on each test is  1—0.05 = 0.95

In discussing multiple comparison procedures we refer to this probability of a Type I

error (Oé = 005) as the comparisonwise Type I error rate ; It indicate the level

of significance associated with a  single  pairwise comparison.

What is the probability that in making three pairwise comparisons, we will commit

a Type I error on __ at least one  of the three tests?

(a) To answer this question, note that the probability that we will not make a

Type I error on any of the three tests is  (0.95)(0.95)(0.95) = 0.8574

(b) The probability of making at least one Type T erroris  1—0.8574 = 0.1426

(¢) Thus, when we use Fisher’s LSD procedure to make all three pairwise compar-
isons, the Type I error rate associated with this approach is not 0.05, but actu-

ally 0.1426; we refer to this error rate asthe  overall or  experimentwise

Type I error rate.
To avoid confusion, we denote the experimentwise Type I error rate as  apgy -

The experimentwise Type I error rate gets larger for problems with more popu-
lations. For example, a problem with five populations has 10 possible pairwise
comparisons. If we tested all possible pairwise comparisons by using Fisher’s LSD
with a comparisonwise error rate of a = 0.05, the experimentwise Type I error rate
would be  1—(1-0.05)" = 0.40

In such cases, practitioners look to alternatives that provide better control over the

experimentwise error rate.

One alternative for controlling the overall experimentwise error rate, referred to as

the  Bonferroni adjustment , involves using a smaller comparisonwise error rate

for each test.

For example, if we want to test C pairwise comparisons and want the maximum
probability of making a Type I error for the overall experiment to be agy, we

simply use a comparisonwise error rate equal to  agy /C .
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14.

15.

16.

17.

In the Chemitech experiment, if we want to use Fisher’s LSD procedure to test all

three pairwise comparisons with a maximum experimentwise error rate of oy = 0.05

we set the comparisonwise error rate to be o = 0.05/3 = 0.017

(Recall Chapter 9) For a fixed sample size, any decrease in the probability of making
a Type I error will result in an increase in the probability of making a  Type II
error, which corresponds to accepting the hypothesis that the two population means

are equal when in fact they are not equal.

As a result, many practitioners are reluctant to perform individual tests with a low
comparisonwise Type I error rate because of the increased risk of making a Type II

error.

Several other procedures, such as  Tukey’s procedure  and  Duncan’s multiple

range test , have been developed to help in such situations. However, there is

7

considerable controversy in the statistical community as to which procedure is

best.” The truth is that no one procedure is best for all types of problems.

13.4 Randomized Block Design*

13.5 Factorial Experiment®

© EXERCISES

-

13.2
13.3
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£ 13, 15, 18, 19
. 35, 37
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Anderson’s Statistics for Business & Economics (14/E)

Chapter 14. Simple Linear Regression
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Overview

1. Managerial decisions often are based on the relationship between two or more vari-

ables.

2. [Bample)

(a) After considering the relationship between advertising expenditures and sales,
a marketing manager might attempt to  predict  sales for a given level of

advertising expenditures.

(b) A public utility might use the relationship between the daily high temperature
and the demand for electricity to  predict  electricity usage on the basis of

next month’s anticipated daily high temperatures.

3. Regression analysis can be used to develop  an equation  showing how the vari-

ables are related.

4. In regression terminology, the variable being predicted is called the  dependent

variable (denoted by y ). The variable or variables being used to predict the

value of the dependent variable are called the independent  variables (denoted

by T ) .
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5. Simple linear regression: the simplest type of regression analysis involving
one independent variable and  one dependent variable in which the re-

lationship between the variables is approximated by a  straight line

6. Regression analysis involving two or more  independent variables is called

multiple  regression analysis.

7. Multiple regression and cases involving  curvilinear  relationships are covered in
Chapters 15 and 16.

14.1 Simple Linear Regression Model
1. Armand’s Pizza Parlors

(a) Armand’s Pizza Parlors is a chain of Italian-food restaurants located in a five-

state area. Armand’s most successful locations are near college campuses.

(b) The managers believe that — quarterly sales  for these restaurants (denoted

by y ) are related positively to the _ size of the student  population
(denoted by  z );

(c) Restaurants near campuses with a large student population tend to generate

more sales than those located near campuses with a small student population.

2. Using regression analysis, we can develop an equation showing how the dependent

variable y is related to the independent variable z.

Regression Model and Regression Equation

1. (population) In the Armand’s Pizza Parlors example, the population consists of all
the Armand’s restaurants. For every restaurant in the population, there is a value of

x___ (student population) and a corresponding value of y  (quarterly sales).
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2. (regression model) The equation  that describes how y is related to x and

an __ error term  is called the regression model.

3. Simple Linear Regression Model

Y=o+ Prw+e (14.1)

o and [3; are referred to as the arameters  of the model, and € (the Greek
p

letter epsilon) is a  random variable referred to as the  error term

4. The error term accounts for the  variability in y  that cannot be explained by

the linear relationship ~ between x and y.

5. The population of all Armand’s restaurants can also be viewed as a collection of

subpopulations , one for each distinct value of

(a) For example, one subpopulation consists of all Armand’s restaurants located

near college campuses with 8000 students ; another subpopulation con-

sists of all Armand’s restaurants located near college campuses with 9000 students

and so on.

(b) Each subpopulation has a corresponding  distribution of y values . Thus,

a distribution of y values is associated with restaurants located near campuses
with 8000 students; a distribution of y values is associated with restaurants

located near campuses with 9000 students; and so on.

6. (regression equation) Each distribution of y values has its own  mean  or

expected value . The equation that describes how the expected value of v,

denoted E(y), is related to z is called the regression equation

7. Simple Linear Regression Equation

E(y) = Bo+ P (14.2)

The graph of the simple linear regression equation is a straight line; [y is the

y-intercept  of the regression line, 3; is the slope , and E(y) is the mean

or expected value of y for a given value of x.

8. (Figure 14.1) Possible regression lines

(112—2) %}EE‘{'% (:) February 19, 2024



Chapter 14 Simple Linear Regression Page 4/51

FIGURE 14.1 Possible Regression Lines in Simple Linear Regression

Panel A: Panel B: Panel C:

Positive Linear Relationship Negative Linear Relationship No Relationship
E(y) E(y) E(y)
Intercept
Regression line ﬂo
Slupe;fi1 Intercept Slope ﬂl is0
Slope B is negative .5,]
Intercept ; i Regression line
is positive
B,
Regression line
o &5 X

Estimated Regression Equation

1. If the values of the population parameters g, and 3 were known, we

could use equation (14.2) to compute the mean value of y for a given value of x.

2. In practice, the parameter values are not known and must be estimated using

sample data . Sample statistics (denoted b, and b, ) are computed

as estimates of the population parameters Sy and (. Substituting the values of
the sample statistics by and by for By and [; in the regression equation, we obtain

the estimated regression equation

3. Estimated Simple Linear Regression Equation

gy =by+bx (14.3)

4. (the estimated regression line) The graph of the estimated simple linear regres-
sion equation is called the estimated regression line; by is the y-intercept and b; is

the slope.

5. In general, ¢  is the point estimator of E(y), the mean value of y for a given

value of z.

6. (Figure 14.2) A summary of the estimation process for simple linear regression.
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FIGURE 14.2 The Estimation Process in Simple Linear Regression

Sample Data:

Regression Model
y=f,+Bx+e
Regression Equation
E(y) = }30 + ,le
Unknown Parameters

BB,

Estimated Regression
Equation

byand b,
provide estimates of

ﬂo and ﬂl

y= b0+ blx

Sample Statistics

7. Armand’s Pizza Parlors

(a) To estimate the mean or expected value of quarterly sales for all restaurants
located near campuses with 10,000 students, Armand’s would substitute the
value of 10,000 for x in equation (14.3).

(b) In some cases, however, Armand’s may be more interested in predicting sales

for one particular restaurant.

(¢) For example, suppose Armand’s would like to predict quarterly sales for the
restaurant they are considering building near Talbot College, a school with
10,000 students. As it turns out, the best predictor of y for a given value of x

is also provided by ¢

(d) Thus, to predict quarterly sales for the restaurant located near Talbot College,

Armand’s would also substitute the value of 10,000 for x in equation (14.3).

8. The value of § provides both a  point estimate  of E(y) for a given value of x

and a  prediction  of an individual value of y for a given value of x.

Notes + Comments

1. Regression analysis cannot be interpreted as a procedure for establishing a  cause-and-effect

relationship between variables. It can only indicate how or to what extent variables
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are associated with each other.

2. Any conclusions about cause and effect must be based upon the  judgment  of

those individuals most knowledgeable about the application.

3. The regression equation in simple linear regression is F(y) = [y + fiz. More

advanced texts in regression analysis often write the regression equation as

E(y|z) = Bo + 1w

to emphasize that the regression equation provides the mean value of y for a given

value of z.

14.2 Least Squares Method

1. The least squares method is a procedure for using sample data to find the

estimated regression equation.

2. (Table 14.1) Armand’s Pizza Parlor
Suppose data were collected from a sample of 10 Armand’s Pizza Parlor restaurants
located near college campuses. For the ith observation or restaurant in the sample,
x; is the size of the student population (in thousands) and y; is the quarterly sales
(in thousands of dollars).

TABLE 14.1  Student Population and Quarterly Sales Data for 10 Armand'’s
Pizza Parlors

Student Quarterly
Restaurant Population (1000s) Sales ($1000s)
i X; Yi
1 2 58
2 3 105
3 8 88
4 8 118
5] 12 117
b 16 137
7 20 157
8 20 169
? 22 149
10 26 202
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3. (Figure 14.3) Scatter diagrams for regression analysis are constructed with the inde-

pendent variable x (student population) on the horizontal axis and the dependent

variable y (quarterly sales) on the vertical axis.

(a)

FIGURE 14.3 Scatter Diagram of Student Population and Quarterly
Sales for Armand’s Pizza Parlors

220
200 |- Y
180 [
160 -
140
120 L] .
100

Quarterly Sales ($1000s)

80 -

| I |
0 2 4 6 8 10 12 14 16 18 20 22 24 26

Student Population (1000s)

The  scatter diagram  enables us to observe the data graphically and to

draw preliminary conclusions about the possible relationship between the vari-

ables.

Quarterly sales appear to be higher at campuses with larger student popula-

tions.

In addition, for these data the relationship between the size of the student pop-

ulation and quarterly sales appears to be approximated by a  straight line

A positive linear  relationship is indicated between x and y.

We therefore choose the  simple linear regression ~ model to represent the

relationship between quarterly sales and student population.

Next task is to use the sample data in Table 14.1 to determine the values of

by and by in the estimated simple linear regression equation.

4. For the 7th restaurant, the estimated regression equation provides

Ui = by + byz; (14.4)

where
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10.

o ¢;: predicted value of quarterly sales ($1000s) for the ith restaurant

o bp: the y-intercept  of the estimated regression line

o bi: the slope of the estimated regression line

o 1z;: size of the student population (1000s) for the ith restaurant

In simple linear regression, each observation  (z,;,1,)  consists of two values: one

for the independent variable and one for the dependent variable.

Every restaurant in the sample will have an observed value of sales y; and a predicted

value of sales ;.

For the estimated regression line to provide a good fit to the data, we want the differ-

ences between the observed sales values and the predicted sales values  to be small

(the least squares method) The least squares method uses the sample data to

provide the values of by and b; that — minimize  the sum of the squares  of

the deviations  between the observed values of the dependent variable y; and

the predicted values of the dependent variable ;.

Least Squares Criterion

where

e y;:  observed value  of the dependent variable for the ith observation

e Uit predicted value  of the dependent variable for the 7th observation

Slope and Y-Intercept for the Estimated Regression Equation Differential
calculus can be used to show (see Appendix 14.1) that the values of by and by that

minimize expression (14.5) can be found by:

po— X —Dwi-§)  _ Yy —nig 14.6
' S (x; — )2 a2 — nx? (14.6)
by = 7 — bz (14.7)

where
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e x;: value of the independent variable for the ith observation
e y;: value of the dependent variable for the ith observation

e 7: mean value for the independent variable

« y: mean value for the dependent variable

¢ n: total number of observations

fITERER

0 QUESLION ...\ (p660)

Using data in Table 14.2 to calculate the slope and intercept of the estimated

regression equation for Armand’s Pizza Parlors example.

sol:

n 10 n 10
b (i —7)(y—g) _ 2840 _
' So(x; — T)2 568

by = §—bZ=130—5(14) =60

Thus, the estimated regression equation is ¢ = 60 + 5z
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TABLE 14.2 Calculations for the Least Squares Estimated Regression

Equation for Armand's Pizza Parlors

Restauranti  x; y; Xx—Xx y-y x-=-xy-y x-x7?

1 2 58 =12 —72 864 144

2 6 105 -8 =5 200 64

2 8 88 -6 —-42 2T 36

4 8 118 -6 =12 72 36

5 12 17 =, =13 26 4

6 16 137 2 7 14 4

7 20 157 6 27 162 36

8 20 169 6 39 234 36

9 22 149 8 19 152 64

10 26 202 12 72 864 144

Totals 140 1300 2840 568
2x; Zy; 26 =Xy —y) = — x?

11. (Figure 14.4) The graph of this equation on the scatter diagram.

FIGURE 14.4 Graph of the Estimated Regression Equation for Armand’s Pizza

Parlors: y = 60 + 5x

220 -
200
180 [
160 [
140 |

12 Slope b, = 5

100

Quarterly Sales ($1000s)

80

. 60
y intercept
by=60 4o}

20 |

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Student Population (1000s)

(a) The slope of the estimated regression equation (b, = 5) is positive , im-

plying that as student population increases, sales increase.

(b) We can conclude (based on sales measured in $1000s and student population
in 1000s) that an _ increase in the student population of 1000 is associ-

ated with an  increase of $5000 in (mean) expected sales; that is,

quarterly sales are expected to increase by $5 per student.
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12.

13.

14.

If we wanted to predict quarterly sales for a restaurant to be located near a campus

with 16,000 students, we would compute

g=60+5(16) = 140

Hence, we would predict quarterly sales of $140,000 for this restaurant.
This least squares criterion is used to choose the equation that provides the best fit .

If some other criterion were used, such as minimizing the sum of the  absolute deviations

between y; and ;, a different equation would be obtained. In practice, the least

squares method is the  most widely used

14.3 Coefficient of Determination

1.

How well does the estimated regression equation fit the data? The coefficient of determination

provides a measure of the  goodness of fit ~ for the estimated regression equation.

(residual) For the ith observation, the difference between the observed value of
the dependent variable, ¢, , and the predicted value of the dependent variable,
7; , is called the ith residual. The ith residual represents the error in using ¢;

to estimate y;. Thus, for the ith observation, the residual is ¢, —¢; .

(Sum of Squares Due to Error) The sum of squares of these residuals or errors
is the quantity that is minimized by the least squares method. This quantity, also

known as the sum of squares due to error, is denoted by SSE

SSE= Y (yi— ) (14.8)

(Table 14.3) The value of SSE is a measure of the error in using the estimated
regression equation to predict the values of the dependent variable in the sample.
SSE = 1530 measures the error in using the estimated regression equation § =

60 + bx to predict sales.
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TABLE 14.3 Calculation of SSE for Armand’s Pizza Parlors

x; = Student  y; = Quarterly Predicted Squared
Population Sales Sales Error  Error

Restauranti (1000s) ($1000s) y.=60+5x. y, -y (y.—y)
1 2 58 70 =1 144
2 6 105 90 15 225
8 8 88 100 —12 144
4 8 118 100 18 324
5 12 117 120 — 9
6 16 137 140 =g 9
7 20 157 160 =g 9
8 20 169 160 9 81
9 22 149 170 =21 441
10 26 202 190 12 144
SSE = 1530

5. Now suppose we are asked to develop an estimate of quarterly sales  without
knowledge of the size of the student population. Without knowledge of any related

variables, we would use the sample mean  as an estimate of quarterly sales at

any given restaurant.

6. (Table 14.4) (Total Sum of Squares) We show the sum of squared deviations
obtained by using the  sample mean = 130  to predict the value of quarterly

sales for each restaurant in the sample. For the ith restaurant in the sample, the
difference ¢,y  provides a measure of the error involved in using ¥ to predict
sales. The corresponding sum of squares, called the total sum of squares, is denoted
SST .
SST= Y-y (149
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TABLE 14.4 Computation of the Total Sum of Squares for Armand’s Pizza Parlors

x; = Student  y; = Quarterly Squared
Population Sales Deviation Deviation

Restaurant i (1000s) ($1000s) yi—y (y;i—yP
1 2 58 —72 5184
~ 6 105 S5 625
3 8 88 —42 1764
4 8 118 —12 144
5 12 117 =13 169
6 16 137 7 49
7 20 157 27 729
8 20 169 39 1521
9 22 149 19 361
10 26 202 72 5184
SST = 15,730

|
7. (Figure 14.5)

FIGURE 14.5 Deviations About the Estimated Regression Line and the Line

y = y for Armand’s Pizza Parlors

220 [

200 |- Y10 _3;10 {

180

160 Yo —¥

140
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100

Quarterly Sales ($1000s)

1 1 1 1 1 1 1 1 1 1 1 X

1 1
0 2 4 6 8 10 12 14 16 18 20 22 24 26
Student Population (1000s)

8. We can think of SST as a measure of how well the observations cluster about
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the ¢ line and SSE as a measure of how well the observations cluster about

the ¢ line .

9. (Sum of Squares Due to Regression) the sum of squares due to regression, is
denoted =SSR ., measures how much the y values on the estimated regression

line deviate from :

SSR=_ (-7  (1410)

10. (Relationship Among SST, SSR, and SSFE) From the preceding discussion, we
should expect that SST, SSR, and SSE are related.

SST = SSR + SSE (14.11)

where

e SST: total sum of squares
o SSR: sum of squares due to regression
o« SSE: sum of squares due to error

11. SSR can be thought of as the explained  portion of SST, and SSE can be
thought of as the unexplained  portion of SST.

12. Armand’s Pizza Parlors example

we already know that SSE = 1530 and SST = 15, 730; therefore, solving for SSR

in equation (14.11), we find that the sum of squares due to regression is

SSR=_SST-SSE  =15,730 — 1530 = 14, 200

13. How the three sums of squares, SST, SSR, and SSE, can be used to provide a

measure of the goodness of fit for the estimated regression equation?

(a) The estimated regression equation would provide a perfect fit if every value of

the dependent variable y; happened to lie on the estimated regression line.

(b) Inthiscase, ¢,—g;  would be zero for each observation, resultingin  SSE = 0

(¢) Because SST = SSR + SSE, we see that for a perfect fit SSR must equal

SST, and the ratio (222 ) must equal one.
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(d) Poorer fits will result in larger values for SSE. Hence the poorest fit occurs
when  SSR=0 and_SSE = SST

14. (Coefficient of Determination) The ratio SSR/SST, which will take values
between zero and one, is used to evaluate the goodness of fit for the estimated
regression equation. This ratio is called the coefficient of determination and is
denoted by (_ 2 ) (Other textbook:  R*> ).

2o 95K (14.12)
SST
15. When we express the coefficient of determination as a percentage, r? can be inter-

preted as the percentage  of the total sum of squares that can be explained by

using  the estimated regression equation

16. Armand’s Pizza Parlors example

(a) The value of the coefficient of determination is

, SSR 14,200

_ - — 0.902
SST ~ 15,730 09027

r

(b) For Armand’s Pizza Parlors, we can conclude that 90.27% of the total sum of

squares can be explained by using the estimated regression equation §y = 60 + 5x to predict quai

(c) Inother words, 90.27% of the variability in sales  can be explained by the

linear relationship between the size of the student population and sales. We

should be pleased to find such a good fit for the estimated regression equation.

Correlation Coefficient

1. In Chapter 3 we introduced the correlation coefficient as a descriptive measure of
the strength of linear association between two variables, x and y. Values of the

correlation coefficient are always between  —1 and +1

2. A value of +1 indicates that the two variables x and y are  perfectly related

in a positive  linear sense. A value of —1 indicates that x and y are perfectly
related in a  negative  linear sense, with all data points on a straight line that
has a negative slope. Values of the correlation coefficient close to zero indicate that

x and y are  not linearly related
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3. (Sample Correlation Coefficient) If a regression analysis has already been per-

2

formed and the coefficient of determination r* computed, the sample correlation

coefficient can be computed:

sy =  (sign of by)v/Coefficient of determination = (sign of by )V/r2 (14.13)

where b; is the slope of the estimated regression equation ¢ = by + b1 x

@ 7taihE : Show that the coefficient of determination of a simple linear regression is the

square of the sample correlation coefficient of (x1,41), -, (Tn, Yn)-

4. Armand’s Pizza Parlor example

the value of the coefficient of determination corresponding to the estimated regres-
sion equation § = 60 + 5z is 0.9027. Because the slope of the estimated regression
equation is positive, equation (14.13) shows that the sample correlation coefficient

is +4/0.9027 = +0.9501. (a strong positive linear association exists between = and
y-)

5. In the case of a  linear relationship ~ between two variables, both the coefficient

of determination and the sample correlation coefficient provide measures of the
strength of the relationship. The coefficient of determination provides a measure
between zero and one, whereas the sample correlation coefficient provides a measure

between —1 and +1.
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6. Although the sample correlation coefficient is restricted to a linear relationship be-

tween two variables, the coefficient of determination can be used for nonlinear

relationships and for relationships that have  two or more independent variables

Thus, the coefficient of determination provides a wider range of applicability.

(f87) limitations of R?: three common misunderstandings

Source : Michael H. Kutner et al. (2019), Applied Linear Statistical Models: Applied Linear
Regression Models, Mcgraw-Hill Inc., (5th edition)

1. Misanderstanding 1: A high R? indicates that useful predictions can be

made. (not necessarily correct)

(a) (Toluca Company Example) the coefficient of determination was high (R?* =
0.82). Yet the 90 percent prediction interval for the next lot, consisting of
100 units, was wide (332 to 507 hours) and not precise enough to permit

management to schedule workers effectively.

(b) Misunderstanding 1 arises because R? measures only a __ relative reduction

from SST and provides no information about absolute precision for estimating

a mean response or predicting a new observation.

2. Misunderstanding 2: A high R? indicates that the estimated regression line is a

good fit . (not necessarily correct)

(a) (Figure 2.9a) a scatter plot where R? is high (R* = 0.69). Yet a linear regres-

sion function would not be a good fit since the regression relation is curvilinear.

3. Misunderstanding 3: A R? near zero indicates that X and Y are not related.

(not necessarily correct).

(a) (Figure 2.9b) a scatter plot where R? between X and Y is R? = 0.02. Yet X
and Y are strongly related; however, the relationship between the two variables

is curvilinear.

(b) Misunderstandings 2 and 3 arise because R? measures the degree of _ linear association

between X and Y, whereas the actual regression relation may be curvilinear.
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FIGURE 2.9 () (b)
Diustrations Scatter Plot with R? = .69 Scatter Plot with 82 = .02
of Two Misun- Linear regression is not a good fit Strong relation between X and ¥
derstandings 14 ~ 15+
about o %
Coefficient of 12k e ®
Determination. e ® e .
-]
10+
10 @ e
b r_ > * ®
8l ° e
® 5( ¢ e
6 e .
4 . 1 | I J — S E S [ — |
4] 2 4 6 8 10 0 5 10 15
X X

14.4 Model Assumptions

1. In conducting a regression analysis, we begin by making an assumption about the
appropriate model for the relationship between the dependent and independent

variable(s).

2. For the case of simple linear regression, the assumed regression model is

y=0+ bz te

3. Then the least squares method is used to develop values for by and b;, the estimates
of the model parameters 3y and Sy, respectively. The resulting estimated regression
equation is

Qibo‘l—bll’

Even with a large value of r2, the estimated regression equation should not be
used until further analysis of the appropriateness of the assumed model has been

conducted.
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4. An important step in determining whether the assumed model is appropriate in-

volves  testing for the significance  of the relationship. The tests of significance

in regression analysis are based on the following assumptions about the error term

€.

5. Assumptions About The Error Term ¢ in the Regression Model

y=Po+ Pix+e

(a) The error term € is a random variable with a mean or expected value of zero;

that is, F(e) =0

Implication: [y and B, are constants, thus, for a given value of z, the expected

value of y is

E(y) = Bo + fix (14.14)
As we indicated previously, equation (14.14) is referred to as the regression
equation.
(b) The variance of €, denoted by g2 | is the same for all values of x.

Implication: The variance of y about the regression line equals o2 and is the

same for all values of x

(¢) The values of € are  independent

Implication: The value of € for a particular value of x is not related to the
value of € for any other value of x; thus, the value of y for a particular value

of x is not related to the value of y for any other value of z.

(d) The error term € is a  normally distributed  1.v. for all values of z.

Implication: Because y is a linear function of ¢, y is also a normally distributed

random variable for all values of z.

6. Figure 14.6 illustrates the model assumptions and their implications; note that
in this graphical interpretation, the value of  F(y) changes according to the
specific value of x considered. However, regardless of the = value, the probability

distribution of € and hence the probability distributions of y are  normally

distributed, each with the same variance
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FIGURE 14.6 Assumptions for the Regression Model

Distribution of
Distribution of yatx =30

yatx=20

Distribution of
yatx=10

E(y) = By + Byx

Note: The y distributions have the
same shape at each x value.

7. The specific value of the error € at any particular point depends on whether the

actual value of 4y  is greater than or less than  F(y) .

8. We assume that a straight line represented by g3, + 5,2  is the basis for the

relationship between the variables.

14.5 Testing for Significance

1. In a simple linear regression equation, the mean or expected value of y is a linear

function of z: E(y) = By + frz. If the value of 3, is zero , the mean value of y

does not depend on the value of x and hence we would conclude that x and y are

not linearly related
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To test for a significant regression relationship, we must conduct a hypothesis test

to determine whether the value of 3, is zero

Two tests are commonly used. Both require an estimate of 52 | the variance of

€ in the regression model.

Estimate of o2

1.

From the regression model and its assumptions we can conclude that o2, the variance

of €, also represents the variance of the y values about the regression line.

Thus, SSE , the sum of squared residuals, is a measure of the variability of

the actual observations about the estimated regression line.

SSE= Y (yi—u)* = D(yi—by— b))

Statisticians have shown that SSE has n—2  degrees of freedom because two

parameters (3 and ;) must be estimated to compute SSFE.

. The mean square error (MSE)  provides the estimate of o?: it is SSE divided

by its degrees of freedom.

Mean Square Error (Estimate of ¢?)

SSE
n—2

s> = MSE =

(14.15)

Standard Error of the Estimate

s = VMSE = | 25F (14.16)

n—2
Armand’s Pizza Parlors example

1530
s2=MSE = —~ - 191.25

provides an unbiased estimate of o2.

s =vVMSE = 191.25 = 13.829.
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t Test
1. The purpose of the t test is to see whether we can conclude that #; # 0. We will
use the sample data to test the following hypotheses about the parameter [3;.
H()I/))lz(]./ Halﬁl#()
2. If Hyisrejected, we will conclude that 8; # 0 and that a  statistically significant
relationship exists between the two variables.
3. If Hy cannot be rejected, we will have  insufficient evidence  to conclude that a
significant relationship exists.
4. The properties of the sampling distribution  of Bi, the least squares estimator
of by, provide the basis for the hypothesis test.
5. Sampling Distribution of b,
e Expected Value:  FE(b)) = 3,
« Standard Deviation: ¢, = I
) Y (x; — )2
(GLEAR):

o Distribution Form:  Normal (14.17)

6. Because we do not know the value of o, we develop an estimate of o},, denoted s, ,

by estimating ¢ with s in equation (14.17). Thus, we obtain the following estimate

of Op, -

7. Estimated Standard Deviation of b;

Sp = (14.18)

> (- 2)?
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8. The standard deviation of by is also referred to as the standard error of b;. Thus,

sp, provides an estimate of the standard error of b;.

9. The t test for a significant relationship is based on the fact that the test statistic
bl — “61

Sbl

follows a ¢  distribution with  n—2  degrees of freedom. If the null hypoth-

esis is true, then 3, =0 and = /3/s,

10. t Test for Significance in Simple Linear Regression

(a) Hypothesis:
Holﬁlzo, Ha561?é0
b

Sby

(b) Test Statistic: ¢ = (14.19)
(¢) Rejection Rule:
i. p-value approach: Reject Hj if p-value <

ii. Critical value approach: Reject Ho if ¢ < —t,, orif ¢>1,/,

where t, /o is based on a t distribution with n—2 degrees of freedom.

2 QUESLION ... (p678)

Conduct t test of significance for Armand’s Pizza Parlors at the o = 0.01 level of

significance.

sol:

1. Hypothesis:  Hy: 3, =0, H,: 01 #0

2. Level of significance: o = (.01

3. Test statistic (under Hy): ¢ = ﬁ = L = 8.62
Sb, 0.5803

4. Decision rule

(a) Reject Hy if p-value < o , oOr
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(b) Reject Hy if  |t| > taj2n—2 = toooss = 3.355 . (Table 2 of Appendix D,
upper tail of the ¢ distribution)

5. Decision:

(a)  p-value (0.000) less than 2(0.005) = 0.01. (Software), we reject Hy
(b)  t=8.62>ty/2,-2=3.355, we reject Hy

6. Conclusion:  We reject H, and conclude that (3; is not equal to zero

This evidence is sufficient to conclude that a significant relationship exists between

student population and quarterly sales

Confidence Interval for 5,

1. The form of a confidence interval for ; is as follows:

by + ta/2,n723b1

(RIERR:)

2. The point estimator is 5,  and the margin of error is ¢, /55, -

3. Develop a 99% confidence interval estimate of b; for Armand’s Pizza Parlors. From

Table 2 of Appendix B we find ty 0058 = 3.355. Thus, the 99% confidence interval

estimate of by is

b £tajzn—25 = 5+3.355(0.5803) =5+1.95

or 3.05 to 6.95.

4. At the a = 0.01 level of significance, we can use the 99% confidence interval as

an  alternative  for drawing the hypothesis testing conclusion for the Armand’s
data.
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D.

Because 0, the hypothesized value of b1, is  not included  in the confidence inter-

val (3.05 to 6.95), we can  reject H, and conclude that a significant statistical

relationship exists between the size of the student population and quarterly sales.

In general, a confidence interval can be used to test any  two-sided hypothesis

about ;. If the hypothesized value of 51 is  contained  in the confidence interval,

do not reject Hy. Otherwise, reject H.

F Test

1.

(RLERR:)

Recall:  SST =% (y;—9)° , SSE=>(yi—#)* , SSR=>(—7)

An F test, based on the F' probability distribution, can also be used to test for

significance in regression. With only  one independent variable , the F test will

provide the same conclusion as the t test.

But with more than one independent variable, only the F' test can be used to test

for an  overall significant  relationship.

. If the null hypothesis Hy : #; = 0 is true, the mean square due to regression
( mean square regression ), and is denoted A/ SR . In general,
MSR = _ oof
Regression degrees of freedom
The regression degrees of freedom is always equal to the  number of independent

variables in the model. Because we consider only regression models with one inde-

pendent variable in this chapter, we have M SR = SSR/1 = SSR
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6.

(RLERR:)

8.

9.

If the null hypothesis (Hy : 51 = 0)istrue, MSR and MSE  aretwo inde-
pendent estimates of o2 and the sampling distribution of VM SR /MSE  follows

an I distribution with numerator degrees of freedom equal to one and denominator
degrees of freedom equal to n—2. Therefore, when /5; = 0, the value of MSR/MSE

should be close to  one .

If the null hypothesis is false (87 # 0), MSR will _ overestimate o? and the
value of MSR/MSE will be _inflated  ; thus, large values of MSR/MSE lead

to the rejection of Hy and the conclusion that the relationship between x and y is

statistically significant.

)2 ~ 2

E(MSE) = _g* , E(MSR)= o*+3) (X;i—X)

If Hy is false, M SE still provides an unbiased estimate of o and M SR overestimates
o?. If Hy is true, both MSE and M SR provide unbiased estimates of ¢2; in this
case the value of MSR/MSE should be close to 1.

F Test for Significance in Simple Linear Regression

(a) Hypothesis: Hy: 81 =0, H,:p#0
(b) Test Statistic: F = 4158  (14.21)
(c¢) Rejection Rule:
i. p-value approach: Reject Hj if p-value < «

ii. Critical value approach: Reject Hy it F > F,,, »

where F, is based on an F' distribution with 1 degree of freedom in the nu-

merator and n—2 degrees of freedom in the denominator.
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10. Decision and Conclusion.

2 QUESEION ...\ (p680)

Conduct the F test for the Armand’s Pizza Parlors example. ( a = 0.01)

sol:

10. A similar ANOVA table can be used to summarize the results of the F' test for

significance in regression.

11. (Table 14.5)

TABLE 14.5 General Form of the Anova Table for Simple Linear Regression

Source Sum Degrees Mean
of Variation  of Squares  of Freedom Square F p-value
_ _ SSR _ MSR
Regression SSR 1 MSR = 1 F= MSE
Error SSE M= & MSE = SSE
=7
Total SST n—1

12. (Table 14.6) ANOVA table with the F' test computations performed for Armand’s

Pizza Parlors.
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TABLE 14.6 Anova Table for the Armand’s Pizza Parlors Problem

Source Sum Degrees Mean

of Variation  of Squares  of Freedom Square F p-value
_ 14,200 14,200

Regression 14,200 1 1" 14,200 191.25 — 74.25 .000

Error 1530 8 12;;0 =191.25

Total 15,730 9

Some Cautions About the Interpretation of Significance Tests

1.

Rejecting the null hypothesis Hy : 51 = 0 and concluding that the relationship be-

tween x and y is significant does not enable us to conclude that a  cause-and-effect

relationship is present between x and y.

Concluding a cause-and-effect relationship is warranted only if the analyst can

provide some type of  theoretical justification that the relationship is in fact

causal .

In the Armand’s Pizza Parlors example, we can conclude that there is a significant
relationship between the size of the student population z and quarterly sales y;
moreover, the estimated regression equation y = 60 + 5z provides the least squares

estimate of the relationship. We cannot, however, conclude that  changes in

student population x  cause changes  in quarterly sales y just because we iden-

tified a statistically significant relationship.

Armand’s managers felt that increases in the student population were a  likely cause

of increased quarterly sales. Thus, the result of the significance test enabled them

to conclude that a cause-and-effect relationship was present.

We can state only that x and y are related and that a linear relationship explains a
significant portion of the variability in y over the range of values for x observed in

the sample.

(Figure 14.7) illustrates this situation. The test for significance calls for the rejection

of the null hypothesis Hy : f; = 0 and leads to the conclusion that x and y are
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significantly related, but the figure shows that the actual relationship between x

and y is not linear.

FIGURE 14.7 Example of a Linear Approximation of a Nonlinear Relationship

y

Actual
relationship /

Smallest Largest
x value x value
S v
B2
Range of x

values observed

7. Although the linear approximation provided by y = by+b,z is good over the range of

x values observed in the sample, it becomes poor for z values  outside that range

8. Given a significant relationship, we should feel confident in using the estimated

regression equation for predictions corresponding to x values  within the range

of the x values observed in the sample.

9. For Armand’s Pizza Parlors, this range corresponds to values of z  between 2 and 26

Unless other reasons indicate that the model is valid beyond this range, predictions

outside the range of the independent variable should be made  with caution
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14.6 Using the Estimated Regression Equation for

Estimation and Prediction

1. When using the simple linear regression model, we are making an  assumption

about the relationship between x and y. We then use the least squares ~ method

to obtain the estimated simple linear regression equation.

2. If a  significant  relationship exists between x and y and the  coefficient of

determination  shows that the fit is good, the estimated regression equation

should be useful for estimation and prediction.

3. Armand’s Pizza Parlors example

(a) The estimated regression equation is § = 60 + 5x. ¢ can be used as a point

estimator of  F(y) , the mean or expected value of y for a given value of

x, and as a predictor of an individual value of 4

(b) For example, a point estimate of the mean quarterly sales for all restaurant

locations near campuses with z = 10 (10,000 students) students is

= 60+5(10) =110 ($110,000).

In this case we are using § as the point estimator  of the mean value of y

when z = 10.

(c) For example, to predict quarterly sales for a new restaurant Armand’s is con-
sidering building near Talbot College, a campus with 10,000 students, we would

compute

g=60+5(10) =110

Hence, we would predict quarterly sales of $110,000 for such a new restaurant.

In this case, we are using ¢y as the predictor  of y for a new observation

when z = 10.
4. Notations:

(a) a* = the given value of the independent variable x

(b) y* = the random variable denoting the possible values of the dependent

variable y when x = x*
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(c)  E(y*) = the mean or expected value of the dependent variable y when

(d) ¢ =B+ prz* = the point estimator of E(y*) and the predictor of an

individual value of y* when z = x*

5. Armand’s Pizza Parlors example

(a) To illustrate the use of this notation, suppose we want to estimate the mean
value of quarterly sales for all Armand’s restaurants located near a campus
with 10,000 students.

(b) For this case, 2* =10 and F(y*)  denotes the unknown mean value

of quarterly sales for all restaurants where x* = 10.

(c) Thus, the point estimate of E(y*) is provided by  §* = 60 + 5(10) = 110
or $110,000.

(d) But, using this notation, y* = 110 is also the predictor  of quarterly

sales for the new restaurant located near Talbot College, a school with 10,000

students.

Interval Estimation

1. Point estimators and predictors do not provide any information about the  precision

associated with the estimate and /or prediction. For that we must develop  confidence

intervals and  prediction intervals.

(a) A confidence interval is an interval estimate of the mean value of y  for a

given value of z.

(b) A prediction interval is used whenever we want to predict an  individual value of y

for a new observation corresponding to a given value of x.

2. Although the predictor of y for a given value of x is the same as the point estimator

of the mean value of y for a given value of z, the interval estimates  we obtain

for the two cases are different.

3. The margin of error is  larger  for a prediction interval.
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4. Prediction intervals resemble confidence intervals. However, they differ conceptu-

ally. A confidence interval represents an

inference on a parameter

and is an

interval that is intended to cover the value of the parameter. A prediction interval

is a statement about the value to be taken by a

observation ¥y, -

Confidence Interval for the Mean Value of y

random variable , the new

1. In general, we cannot expect §* to equal E(y*) exactly. If we want to make an

inference about how close y* is to the true mean value F(y*), we will have to

estimate the variance of ¢*.

2. The formula for estimating the variance of §*, denoted by

[t

82

g*

no Y (x;—x)?

where s* = MSE =Y (i — §:)/(n — 2)

2
7

s, 18

(14.22)

3. The estimate of the standard deviation of §* is given by the square root of equation

(14.22).

1. (NOTE

(112-2) #ste (2)

By + Bi(ri — %) + €, By = Bo + BT
by +bi(z" —2),b5=by+ 0T =7

g+ bi(z" —7)

E(y")

Var(y + by (z* — 7))
Var(y) + Var(bi(z* — 7))

o? o?

e * _ =)\2
n+(a: T)

1 * _ 2)\2
02{——1— @

> (xi —x)?

Sgr = s\/[% + %} (14.23)

(alternative model)
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D.

10.

Armand’s Pizza Parlors

s = 13.829. With z* = 10, £ = 14, and Y _(z;—7)? = 568, we can use equation
(14.23) to obtain

1 (10 — 14)?
Spr» = 13.8294) — + —————— = 13.829v0.1282 = 4.95
10 568
J* — E(y”
~ Tip—

Confidence Interval for E(y*)

,@* :i: tO{/QS’g* (1424)

where the confidence coefficient is 1—a and t,2 is based on the ¢ distribution with

(n—2) degrees of freedom.

Armand’s Pizza Parlors

(a) Develop a 95% confidence interval of the mean quarterly sales for all Armand’s

restaurants located near campuses with 10,000 students.

(b) We have ¢y 0055 =2.306 . Thus, with §* =110 and a margin of error
of tq085- =2.306(4.95) = 11.415 , the 95% confidence interval estimate is
110 £ 11.415.

(¢) In dollars, the 95% confidence interval for the mean quarterly sales of all
restaurants near campuses with 10,000 students is $110,000 £ $11,415. There-
fore, the 95% confidence interval for the mean quarterly sales when the

student population is 10,000 is  $98,585 to $121,415

Note that the estimated standard deviation of §* given by equation (14.23) is small-

est when *—7 =0

In this case the estimated standard deviation of §* becomes

S@*Zﬂ/[%%] =

This result implies that we can make the best or most precise estimate of the mean

value of y whenever z* = 7.
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11. (Figure 14.8) the further z* is from z, the larger 2*—z becomes. As a result, the

confidence interval for the mean value of y will become wider as x* deviates more

from z.
FIGURE 14.8 Confidence Intervals for the Mean Sales y at Given Values of Student Population x
¥y
220 - Upper limit
200
5%
180 -
160 |- Lower limit
g
7 140
=4 Confidence
= 120 | interval limits
wl | depend on x*
= l
T 100 |- ,
1= Confidence :
&5 80fF interval width |
is smallest at 1|
60 T S |
I
40 - I
I
I
20 1 x=14
I
f\/

0 1 1 I I 1 1 I L 1 1 1 I X
0 2 4 6 8 10 12 14 16 18 20 22 24 26

Student Population (1000s)

Prediction Interval for an Individual Value of y

1. The predictor of y*, the value of y corresponding to the given z*, is §* = By + fi1x*.

2. For the new restaurant located near Talbot College, z* = 10 and the prediction
of quarterly sales is g* = 60 + 5(10) = 110, or $110,000. Note that the predic-
tion of quarterly sales for the new Armand’s restaurant near Talbot College is the

same as the point estimate of the mean sales for all Armand’s restaurants

located near campuses with 10,000 students.

3. Determine the variance associated with using y* as a predictor of y when z = z*.

This variance is made up of the sum of the following two components.

(a) The (estimated) variance of the y* values about the mean E(y*): s> .

(b) The (estimated) variance associated with using §* to estimate E(y*):  s7.

(112-2) #EtE (D) February 19, 2024



Chapter 14 Simple Linear Regression Page 35/51

4. The formula for estimating the variance corresponding to the prediction of the value
2

of y when z = z*, denoted s, 18
Sf)red = 32 + 5'12)*
1 x* — )2
_ o (x T%
n o > (r;—17)?
_ 2 (z* — j)2
= 14+ = 14.25
s> e I
5.
Spred (=2)
Ug%red = VCLT(?Q* - y:zew)

= Var(§") + Var(ynew)
= Var(g*) + o?

FIGURE 2.5 Prediction Prediction
Prediction of [ Limits — e— Limits —>
¥ itnew) When if E{Y;} Here if E(Y}) Here
Parameters l l
Unknown.

— N N

Vh

l«—— Confidence Limits for E{y;} ——>

6. (Armand’s Pizza Parlors) the estimated standard deviation corresponding to the
prediction of quarterly sales for a new restaurant located near Talbot College, a
campus with 10,000 students, is computed as follows.

1 (10— 14)2
Spred = 13.8204/1 4 — 4 o0 2
pred \/ 0T 568

= 13.829v1.282 = 14.69

7. Prediction Interval For y*

0* + ta/25pred (1427)
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10.

where the confidence coefficient is 1—« and t,,/5 is based on the ¢ distribution with

n—2 degrees of freedom.

(Armand’s Pizza Parlors) The 95% prediction interval for quarterly sales for the
new Armand’s restaurant located near Talbot College, with ¢* = 110 and a margin
of error of 4 955,.cq = 2.306(14.69) = 33.875 , the 95% prediction interval is
110 £ 33.875 (376,125 to $143,875).

Note that the prediction interval for the new restaurant located near Talbot Col-
lege, a campus with 10,000 students, is wider than the confidence interval for the
mean quarterly sales of all restaurants located near campuses with 10,000 students.
The difference reflects the fact that we are able to estimate the mean value of y

more precisely  than we can predict an individual value of y.

(Figure 14.9) Confidence intervals and prediction intervals are both more precise

when the value of the independent variable z* is closer to Z.

FIGURE 14.9 Confidence and Prediction Intervals for Sales y at Given Values of Student Population x

&7
240

220

« Confidence
interval

200

180 |

2

Prediction intervals
are wider

5

Prediction
interval
limits

Quarterly Sales ($1000s)

Both intervals
have the smallest
width at

x*=x

L
0 2 4 6 8 10 12 14 16 18 20 22 24 26
Student Population (1000s)

F= il
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14.7 Computer Solution

FIGURE 14.10 Output for the Armand's Pizza Parlors Problem

Analysis of Variance

Source DF Adj SS Adj MS F-Value P-Value
Regression 1 14200.0 14200.0 74.25 .000
4—— ANOVA tabl
Error § 15300 1912 e
Total 9 15730.0
Model Summary
S R-sq R-sq(adj)
13.8293 90.27% 89.06%
Coefficients
Term Coef SE Coef T-Value P-Value
Constant 60.00 9.23 6.50 .000
Population 5.000 580 8.62 .000
Regression Equation
Sales = 60.00 + 5.000 Population 4 Estimated Regression Equation
Prediction for Sales
Variable Setting
Population 10
Fit  SE Fit 95% CI 95% PI R
110 495099 (98.5830, 121.417) (76.1275, 143.873) 4 = e

14.8 Residual Analysis: Validating Model Assump-

tions

1. Residual for observation ¢: the difference between the observed value of the depen-

dent variable (y;) and the predicted value of the dependent variable (g;), 1y, —7; -

2. An analysis of the corresponding residuals will help determine whether the assump-

tions made about the regression model are appropriate.
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3. (Table 14.7)

TABLE 14.7 Residuals for Armand’s Pizza Parlors

Student Population Sales Predicted Sales
2 58 70
6 105 90
8 88 100
8 118 100

12 117 120
16 137 140
20 157 160
20 169 160
22 149 170
26 202 190

Residuals
Yi— ¥
-12
15
-12
18
-3
-3
-3

Q9
=21
12

4. Armand’s Pizza Parlors

(a) A simple linear regression model was assumed.

y =P+ Pix+e

(14.29)

This model indicates that we assumed quarterly sales (y) to be a linear function

of the size of the student population (z) plus an error term e. In Section 14.4

we made the following assumptions about the error term e.

I. FE()=0

2. The variance of € is the same for all values of z.

3. The values of € are  independent

4. The error term € has a  normal distribution

Var(e) = o*

(b) These assumptions provide the theoretical basis for the

__ttest  and the

F test  used to determine whether the relationship between z and y is

significant, and for the  confidence and prediction interval — estimates pre-

sented in Section 14.6.

5. If the assumptions about the error term e appear

questionable

, the hypothesis

tests about the significance of the regression relationship and the interval estimation

results  may not be valid

(112-2) #ste (2)

February 19, 2024



Chapter 14 Simple Linear Regression Page 39/51

6. Much of residual analysis is based on an examination of graphical plots:

(a) A plot of the residuals  against values of the independent variable &

(b) A plot of  residuals against the  predicted values of the dependent

variable y

(¢) A standardized residual plot.

(d) A normal probability  plot.

Residual Plot Against =

1. (Figure 14.12)

(a) Panel A: If the assumption that the  variance of ¢ is the same for all values

of x and the assumed regression model is an adequate representation of the
relationship between the variables, the residual plot should give an overall

impression of a  horizontal band of points

(b) Panel B: if the  variance of ¢ is not the same for all values of x—for

example, if variability about the regression line is greater for larger values of

x.

(c¢) Panel C: we would conclude that the assumed regression model is not an ade-

quate representation of the relationship between the variables. A curvilinear

regression model or  multiple  regression model should be considered.
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FIGURE 14.12  Residual Plots from Three Regression Studies
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2. (Figure 14.11) Armand’s Pizza Parlors:

FIGURE 14.11  Plot of the Residuals Against the Independent Variable x
for Armand’s Pizza Parlors

+10

Residual
)

—20 |-

I T T T
0O 2 4 6 8 10 12 14 16 18 20 22 24 26

The residual plot does not provide evidence that the assumptions made for Ar-
mand’s regression model should be challenged. At this point, we are confident in

the conclusion that Armand’s simple linear regression model is  valid .
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3. Experience and good judgment are always factors in the effective interpretation of

residual plots.

Residual Plot Against gy

1. Another residual plot represents the predicted value of the dependent variable i on

the horizontal axis and the residual values on the vertical axis.

2. (Figure 14.13) With the Armand’s data from Table 14.7,

FIGURE 14.13  Plot of the Residuals Against the Predicted Values y
for Armand's Pizza Parlors

y-¥
+20

Residual
S
T

=20 [=

1 1 L L L L
60 80 100 120 140 160 180

Note that the pattern of this residual plot is the same as the pattern of the residual

plot against the independent variable x.

3. For  multiple regression analysis, the residual plot against ¢ is more widely

used because of the presence of more than one independent variable.

Standardized Residuals

1. A random variable is standardized by subtracting its mean and dividing the result

by its standard deviation.

2. With the least squares method, the mean of the residuals is  zero . Thus, sim-

ply dividing each residual by its standard deviation  provides the standardized

residual.
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3. Standard Deviation of the ith Residual

S

Syi—ii

vi—gi = sV1—N

(14.30)

= the standard deviation of residual ¢

= the standard error of the estimate

1 (.CL'Z — jf)2

n o > (r;—1T)?

4. Standardized Residual for Observation 1

Yi — Ui

Syi—9s

(14.32)

(14.31)

5. (Table 14.8) the standardized residuals for Armand’s Pizza Parlors.

TABLE 14.8 Computation of Standardized Residuals for Armand’s Pizza Parlors

Restaurant i

=

[=T e e R B R S

X:

g= 23

S2
-8
=6
-6

12
Teu

(x; — x)?
O — %P2  S(x;— x)?
144 .2535
&4 1127
36 0634
36 .0634
4 .0070
4 .0070
36 .0634
36 0634
64 127
144 .2535
al 568

Note: The values of the residuals were computed in Table 14.7.

6. (Figure 14.14)

(112-2) %zt

20

FIGURE 14.14

Standardized Residuals

h

B535
2127
1634
1634
1070
1070
1634
1634
2127
IS

Variable x for Armand’s Pizza Parlors

s.Vi— Vi

11.1193
12.2709
12.6493
12.6493
13.0682
13.0682
12.6493
12.6493
12.2709
11.1193

Plot of the Standardized Residuals Against the Independent

Y- ¥

1
15
=z
18
=3}
=3
-3
9
-21
12

Standardized
Residual

-1.0792
1.2224
—.9487
1.4230
—.2296
—.2296
= 7]/
NAINS
-1.7114
1.0792
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7. The standardized residual plot can provide insight about the assumption that the er-

ror term € has a  normal distribution . If this assumption is satisfied, the distri-

bution of the standardized residuals should appear to come froma  standard normal

probability distribution.

8. Thus, when looking at a standardized residual plot, we should expect to see approx-

imately  95%  of the standardized residuals between —2 and +2

9. We see in Figure 14.14 that for the Armand’s example all standardized residuals
are between —2 and +2. Therefore, on the basis of the standardized residuals, this

plot gives us no reason to question the assumption that ¢ has a normal distribution.

Normal Probability Plot

1. Another approach for determining the validity of the assumption that the error term

has a normal distribution is the normal probability plot.

2. To show how a normal probability plot is developed, we introduce the concept of

normal scores

(a) Suppose 10 values are selected randomly from a normal probability distri-
bution with a mean of zero and a standard deviation of one, and that the
sampling process is repeated over and over with the values in each sample of

10 ordered from smallest to largest

(b) The random variable representing the smallest value obtained in repeated sam-

pling is called the first-order statistic

(c) Statisticians show that for samples of size 10 from a standard normal proba-
bility distribution, the expected value of the first-order statistic is —1.55. This

expected value is called a  normal score

NOTE: | Compute the expected values of order statistics for a random sample
from a standard normal distribution: evNormOrdStats {EnvStats}

https://search.r-project.org/CRAN/refmans/EnvStats/html/evNormOrdStats.html

(d) (Table 14.9) For the case with a sample of size n = 10, there are 10 order

statistics and 10 normal.
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TABLE 14.10
Normal Scores and
Ordered Standardized
TABLE 8.9 Residuals for Armand’s
Normal Scores Pizza Parlors
Forn=10
Ordered
Order Normal Normal Standardized
Statistic Score Scores Residuals
1 ~1.55 ~1.55 -1.7114
2 —1.00 —-1.00 —1.0792
3 —.65 —.65 —.9487
4 -.37 -.37 —.2372
5 -.12 -.12 —.2296
[ 12 2 —.2296
7 .37 .37 7115
8 .65 .65 1.0792
9 1.00 1.00 1.2224
10 1.55 1.55 1.4230

> data.frame(p, gnorm(p))
p gnorm.p.
.00000000 -Inf
.09090909 -1.3351777
.18181818 -0.9084579
.27272727 -0.6045853
.36363636 -0.3487557
.45454545 -0.1141853

© 0 N O O s W NN -
O O O O O o o o

.54545455 0.1141853
.63636364 0.3487557
0.72727273 0.6045853

10 0.81818182 0.9084579
11 0.90909091 1.3351777
12 1.00000000 Inf

(e) Let us now show how the 10 normal scores can be used to determine whether
the standardized residuals for Armand’s Pizza Parlors appear to come from a

standard normal probability distribution.

(f) (Table 14.10) The 10 normal scores and the ordered standardized residuals are
shown together in Table 14.10. If the normality assumption is satisfied, the
smallest standardized residual should be close to the smallest normal score,

the next smallest standardized residual should be close to the next smallest
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normal score, and so on.

(g) A normal probability plot: a plot with the

axis and the corresponding

normal scores

on the horizontal

standardized residuals

on the vertical axis.

(h) If the standardized residuals are approximately normally distributed, the plot-

ted points should cluster closely around a

the

origin

45-degree line

passing through

3. (Figurel4.15) the normal probability plot for the Armand’s Pizza Parlors exam-

ple: conclude that the assumption of the error term having a normal probability

distribution is reasonable.

FIGURE 14.15  Normal Probability Plot for Armand’s Pizza Parlors

Standardized Residuals

2

45° line

-2 -1 0 +1 +2

Normal Scores

4. Any substantial curvature in the normal probability plot is evidence that the resid-

uals have not come from a normal distribution.
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14.9 Residual Analysis: Outliers and Influential Ob-

servations

Detecting Outliers

1. (Figure 14.16) is a scatter diagram for a data set that contains an _ outlier , a

data point (observation) that does not fit the trend shown by the remaining data.

FIGURE 14.16 | Data Set with an Outlier

2. Outliers represent observations that are suspect and warrant careful examination.

They may represent  erroneous data; if so, the data should be  corrected

3. They may signal a violation of model assumptions; if so, another model  should

be considered.

4. Finally, they may simply be unusual  values that occurred by chance. In this

case, they should be retajned.

5. (Table 14.11) The process of detecting outliers: Except for observation 4 (z4 = 3,
ys = 75), a pattern suggesting a negative linear relationship is apparent. Indeed,
given the pattern of the rest of the data, we would expect y4 to be much smaller

and hence would identify the corresponding observation as an outlier.

6. For the case of simple linear regression, one can often detect outliers by simply

examining the scatter diagram

7. The standardized residuals  can also be used to identify outliers. If an obser-

vation deviates greatly from the pattern of the rest of the data, the corresponding

standardized residual will be large in absolute value.

(112-2) #m=tE (2) February 19, 2024



Chapter 14 Simple Linear Regression Page 47/51

TABLE 14.11

- FIGURE 14.17  Scatter Diagram for Outlier Data Set
Data Set lllustrating the

Effect of an Outlier g

80

X

Yi
45 60
55 o
50 .
75 10}
40
45 20f
30 ¢
35
25 0 1 2 3 4 5 6
15

oo

Lo I L7 TS IS B N R

8. (Figure 14.18) the output from a regression analysis. The highlighted portion of
the output shows that the standardized residual for observation 4 is 2.67. With
normally distributed errors, standardized residuals should be outside the range of

—2 to +2 approximately 5% of the time.

FIGURE 14.18  Output for Regression Analysis of the Outlier Data Set

Analysis of Variance

Source DF Adj SS AdjMS  E-Value P-Value

Regression 1 1268.2 1268.2 7.90 .023

Error 8 1284.3 160.5

Total 9 2555

Model Summary

S R-sq R-sq(adj)

12.6704 49.68% 43.39%

Coefficients

Term Coef SE Coef T-Value P-Value

Constant 64.96 9.26 7.02 .000

X SIES5 2.6 =21l .023

Regression Equation

y=6496-7.33 x

Observation Predicted y Residuals Standard Residuals
1 57.6271 -12.6271 -1.0570
2 57.6271 -2.6271 =210
3 50.2966 —2966 —-.0248
4 42.9661 32.0339 2.6816
By 42.9661 -2.9661 —.2483
6 42.9661 20339 1703
7 35.6356 -5.6356 -4718
8 35.6356 —.6356 =0532
9 28.3051 -3.3051 —2767

10 20.9746 —5.9746 —-5001

(112-2) #EtE (D) February 19, 2024



Chapter 14 Simple Linear Regression Page 48/51

9.

10.

11.

In deciding how to handle an outlier, we should first check to see whether it is a

valid observation . Perhaps an  error ~ was made in initially recording the

data or in entering the data into the computer file.

(Figure 14.19) For example, suppose that in checking the data for the outlier in
Table 14.11, we find an error; the correct value for observation 4 is x4 = 3, y4 = 30.
Figure 14.19 is a portion of the output obtained after correction of the value of ;.
We see that using the incorrect data value substantially affected the goodness of
fit. With the correct data, the value of R-sq  increased from 49.68% to 83.8%
and the value of 5,  decreased from 64.96 to 59.24. The slope  of the line
changed from —7.33 to —6.95.

FIGURE 14.19  Output for the Revised Outlier Data Set

Analysis of Variance

Source DF AdjSS AdjMS F-Value P-Value
Regression 1 1139.66  1139.66 41.38 000
Error 8 220.34 27.54

Total 9 1360.00

Model Summary

S R-sq  R-sqfadj)
5.24808  83.80% 81.77%

Coefficients

Term Coef SECoef T-Value P-Value
Constant  59.24 3.83 15.45 .000
b —0.95 1.08 —6.43 .000
Regression Equation

y=159.24-695x
I —

The identification of the outlier enabled us to correct the data error and improve

the regression results.

Detecting Influential Observations

1.

(Figure 14.20) shows an example of an influential observation in simple linear re-

gression.
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FIGURE 14.20 Data Set with an Influential Observation

3

S Influential

o :
S e ud observation
*
X

The estimated regression line has a negative slope. However, if the influential ob-
servation were dropped from the data set, the slope of the estimated regression
line would change from negative to positive and the y-intercept would be smaller.
Clearly, this one observation is much more influential in determining the estimated

regression line than any of the others.

2. Influential observations can be identified from a  scatter diagram  when only

one independent variable is present.

3. An influential observation may be an _ outlier  (an observation with a y value
that deviates substantially from the trend), it may correspond to an x value far
away from its mean (e.g., see Figure 14.20), or it may be caused by a combination

of the two (a somewhat off-trend y value and a somewhat extreme x value).

4. The presence of the influential observation in Figure 14.20, if valid, would suggest
trying to obtain data on intermediate values of x to understand better the relation-

ship between x and y.

5. Observations with  extreme values  for the independent variables are called high

leverage points . The influential observation in Figure 14.20 is a point with high

leverage.

6. The leverage of an observation is determined by how far the values of the indepen-

dent variables are from their  mean values
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10.

11.

12.

For the single-independent-variable case, the leverage of the ith observation, denoted

hi, can be computed by using equation (14.33).

Definition and properties of leverages:

https://online.stat.psu.edu/stat501/lesson/11/11.2

From the formula, it is clear that the farther z; is from its mean Z, the higher the

leverage of observation i.

(Figure 14.21) a scatter diagram for the data set in Table 14.12, it is clear that
observation 7 (z = 70,y = 100) is an observation with an extreme value of z.

Hence, we would expect it to be identified as a point with high leverage:

1 (z;— 1) 1 (70 — 24.286)>
hr= —4 'Y = = —0.94
T A T S 7 o143

For the case of simple linear regression, observations have high leverage if h; > 6/n

or 0.99, whichever is smaller.

For the data set in Table 14.12, 6/n = 6/7 = 0.86. Because h; = 0.94 > 0.86, we

will identify observation 7 as an observation whose x value gives it large influence.

Influential observations that are caused by an interaction of large residuals and
high leverage can be difficult to detect. Diagnostic procedures are available that
take both into account in determining when an observation is influential. One such

measure, called  Cook’s D statistic , will be discussed in Chapter 15.

FIGURE 14.21  Scatter Diagram for the Data Set with a High Leverage
Observation

13000 o
TABLE 14.12
Data Set with a High ‘
Leverage Observation 12000~ e o
X; Yi ¢
10 125 110.00 - L] Observation with
10 130 high leverage
15 120 \
20 115 100.00 -
20 1 20 1 1 1 1 1 1
25 110 10.00 25.00 40.00 55.00 70.00 85.00
70 100
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15.1 Multiple Regression Model

1.

(Recall) that the variable being predicted or explained is called the  dependent

variable and the variable being used to predict or explain the dependent variable is

called the independent  variable.

Multiple regression analysis is the study of how a dependent variable y is related to

two or more independent ~ variables. In the general case, we will use p  to

denote the number of independent variables.

The concepts of a regression model and a regression equation introduced in the

preceding chapter are  applicable  in the multiple regression case.

Multiple regression model: The equation that describes how the dependent
variable y is related to the independent variables x1, o, - - -, x, and an error term is

called the multiple regression model.

Yy = JU + 61(1)1 + 621’2 + - /{D)pl’p + € (151)
In the multiple regression model, 8y, 81, B2, - -, By are the  parameters  and the
error term € is a _ random variable . y is a linear function of xy, s, -+, z, plus

the error term e.

The error term accounts for the  variability ~— in y that  cannot be explained

by the linear effect of the p independent variables.
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7. (Multiple regression equation):The equation that describes how the mean value

of y is related to x1, s, - - -, x, is called the multiple regression equation.

E(y) = fo+ brxs + Bawa + -+ - + By (15.2)

under the assumption that the mean or expected value of € is zero.

8. The estimated multiple regression equation:

g = bo + bll’l + bgl’g 4+ 4 bpl'p (153)

where by, b1, b, - -+, b, are the estimates of By, 51,82, -, 8, and § is the predicted
value of the dependent variable

9. (Figure 15.1)

FIGURE 15.1 The Estimation Process for Multiple Regression

Multiple Regression
Model

y =ﬁ0 +ﬁ]x1+ ,3212 APk (i Tr G
Multiple Regression Equation
E(y) =B+ Bx + B, + -+ Bpxy

By By» By .. Bp are

unknown parameters

Sample Data:

X X, .. X ¥

Compute the Estimated

o B Multiple Regression
o P12 g ees B Eouats
quation
provide the estimates of $= b0+ b|x1 o h2x2+ e+ by,
e

bﬂ, bl, bz' ,bpare

sample statistics
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15.2 Least Squares Method

1.

The least squares method is used to develop the estimated multiple regression equa-

tion:
min Z(yi —3;)? (15.4)

where y; is observed value of the dependent variable for the ith observation, g; is

predicted value of the dependent variable for the ith observation

In multiple regression, however, the presentation of the formulas for the regression

coefficients S, B1, B2, - - -, Bp involves the use of  matrix algebra  and is beyond

the scope of this text.

Therefore, in presenting multiple regression, we focus on how statistical software
can be used to obtain the estimated regression equation and other information.

The emphasis will be on how to  interpret ~ the computer output rather than on

how to make the multiple regression computations.

An Example: Butler Trucking Company

1.

The Butler Trucking Company, an independent trucking company in southern Cal-

ifornia.

A major portion of Butler’s business involves deliveries throughout its local area. To
develop better work schedules, the managers want to predict the total daily travel

time for their drivers.

(a) Initially the managers believed that the total daily travel time would be closely

related to the number of miles traveled in making the daily deliveries.

(b) (Table 15.1)(Figure 15.2) A simple random sample of 10 driving assignments
provided the data shown in Table 15.1 and the scatter diagram shown in Figure
15.2.
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TABLE 15.1  Preliminary Data for Butler Trucking

Driving x; = Kilometers y = Travel Time

Assignment Traveled (hours)
1 160 9.3
2 80 4.8
8 160 8.9
4 160 5.5
5 80 4.2
6 128 6.2
7 120 7.4
8 104 6.0
9 144 Tide)
10 144 6.1

Source: PC Magazine website, April, 2015. (https://www.pcmag.com/reviews/monitors)

FIGURE 15.2 Scatter Diagram of Preliminary Data for Butler Trucking

Total Travel Time (hours)

1 1 1
80 96 112 128 144 160

Kilometers Traveled

(c) After reviewing this scatter diagram, the managers hypothesized that the sim-
ple linear regression model y = By + (121 + € could be used to describe the
relationship between the total travel time (y) and the number of miles traveled
().

(d) (Figure 15.3) we show statistical software output from applying simple linear
regression to the data in Table 15.1. The estimated regression equation is

y =127+ 0.0678x

i. At the 0.05 level of significance, the F' value of 15.81  and its corre-
sponding p-value of (.004  indicate that the relationship is significant;

that is, we can reject Hy : f1 = 0 because the p-value is less than oo = 0.05.

ii. Note that the same conclusion is obtained from the ¢ value of 3.98

and its associated p-value of  (0.004 .

(112-2) #EtE (D) February 19, 2024



Chapter 15 Multiple Regression Page 5/46

iii. Thus, we can conclude that the relationship between the total travel time

and the number of miles traveled is  significant ; longer travel times

are associated with more miles traveled.

FIGURE 15.3 Output for Butler Trucking with One Independent Variable

Analysis of Variance

Source DF Adj SS Adj MS F-Value  P-Value
Regression 1 15.871 15.8713 15.81 004
Error 8 8.029 1.0036
Total 9 23.900
Model Summary
S R-sq R-sq (adj)
1.00179 66.41% 62.21%
Coefficients
Term Coef  SE Coef T-Value P-Value
Constant 1227 1.40 91 390
Kilometers .0424 0107 3.98 004

Regression Equation

Time = 1.27 + .0424 Kilometers

iv. With a coefficient of determination (expressed as a percentage) of R-Sq =66.41%

we see that  66.41% of the variability  in travel time can be explained

by the linear effect of the number of miles traveled.

3. (Table 15.2) The managers might want to consider adding a second independent
variable (number of deliveries) to explain some of the remaining variability in the

dependent variable.

TABLE 15.2 Data for Butler Trucking with Kilometers Traveled (x,) and

Number of Deliveries (x,) as the Independent Variables

Driving x; = Kilometers x, = Number y = Travel Time
Assignment Traveled of Deliveries (hours)
] 160 4 913
2 80 3 4.8
£ 160 4 8.9
4 160 2 6.5
5 80 2, 4.2
6 128 2 6.2
7 120 3 7.4
8 104 4 6.0
o 144 B 7.6
10 144 2 (1
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4. (Figure 15.4) Computer output with both miles traveled (x;) and number of deliver-
ies (x9) as independent variables is shown in Figure 15.4. The estimated regression
equation is

g=_ 2.869+.06113z; + .923x, (15.6)

FIGURE 15.4 Output for Butler Trucking with Two Independent Variables

Analysis of Variance

Source DF Adj SS Adj MS F-Value P-Value
Regression 2 21.6006 10.8003 32.88 .000
Error 7 2.2994 3285
Total 9 23.900
Model Summary

5 R-sq R-sq (adj)
573142 90.38% 87.63%
Coefficients
Term Coef SE Coef T-Value P-Value
Constant —.869 952 —.91 392
Kilometers 03821 00618 6.18 .000
Deliveries 923 ]| 4.18 .004

Regression Equation

Time = —.869 + 03821 Kilometers + 0.923 Deliveries

Note on Interpretation of Coefficients

1. One observation can be made at this point about the relationship between the esti-
mated regression equation with only the miles traveled as an independent variable

and the equation that includes the number of deliveries  as a second indepen-

dent variable.

2. The value of g3, is not the same in both cases. In simple linear regression,

we interpret 5 as an estimate of the change in y for a  one-unit change  in the

independent variable.

3. In multiple regression analysis, we interpret each regression coefficient as follows: b;

represents an estimate of the  change in y  correspondingtoa  one-unit change

in z;  when all other independent variables are  held constant
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4. Butler Trucking example

(a) B = 0.06113, an estimate of the expected increase in travel time corresponding
to an increase of one mile in the distance traveled when the number of deliveries
is held constant is 0.06113 hours.

(b) pa = 0.923, an estimate of the expected increase in travel time corresponding to
an increase of one delivery when the number of miles traveled is held constant
is 0.923 hours.

15.3 Multiple Coeflicient of Determination

1. In simple linear regression, we showed that the total sum of squares can be parti-
tioned into two components: the sum of squares due to regression and the sum of
squares due to error. The same procedure applies to the sum of squares in multiple
regression.

SST = SSR + SSE (15.7)

where

SST: total sum of squares = > (y; — 7)?

SSR: sum of squares due to regression = 5 (g, — 7/)*

SSE: sum of squares due to error = S (y; — ;)?

2. Butler Trucking problem (Figure 15.4) SST = 23.900, SSR = 21.6006,
and SSE = 2.2994.

3. With only one independent variable (number of miles traveled), the output in Figure
15.3 shows that SST = 23.900, SSR = 15.871, and SSE = 8.029. The value of
SST is the same in both cases because it does not depend on g, but SSR increases
and SSE decreases when a second independent variable (number of deliveries) is
added.
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4. The multiple coefficient of determination, denoted R?, measures the goodness of fit
for the estimated multiple regression equation.

SSR

2 _
R*SST

(15.8)

5. The multiple coefficient of determination can be interpreted as the  proportion of the

variability ~ in the dependent variable that can be explained by the estimated

multiple regression equation.

6. Hence, when multiplied by 100, it can be interpreted as the percentage of the vari-

ability in y that can be explained by the estimated regression equation

7. In the two-independent-variable Butler Trucking example, with SSR =
21.6006 and SST = 23.900, we have R? = 21.6006/23.900 = 0.9038.

8. Therefore, 90.38% of the variability in travel time y is explained by the estimated
multiple regression equation with miles traveled and number of deliveries as the

independent variables.

9. (Figure 15.3) the R-sq value for the estimated regression equation with only one
independent variable, number of miles traveled (x1), is 66.41%. Thus, the percent-
age of the variability in travel times that is explained by the estimated regression

equation increases from  66.41% to 90.38% when number of deliveries is added

as a second independent variable.
10. In general, R? always increases as independent variables are added to the model.

11. Many analysts prefer adjusting R? for the number of independent variables to avoid

overestimating  the impact of adding an independent variable on the amount

of variability exlained by the estimated regression equation.

12. With n denoting the number of observations and p denoting the number of inde-

pendent variables, the adjusted multiple coefficient of determination is computed as

follows:
2 oy N —1
Ri=1-(1-R)—— (15.9)
n—p—1
13. Withnzl() and p = 2, we have

10 -1
2=1—-(1-0. —_
R ( 09038)10_2_1
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14. Thus, after adjusting for the two independent variables, we have an adjusted mul-

tiple coefficient of determination of 0.8763. This value (expressed as a percentage)

is provided in the output in Figure 15.4 as  R-Sq(adj) = 87.63%

15. If the value of R? is small and the model contains a large number of independent

variables, the adjusted coefficient of determination can take a  negative value ;

in such cases, statistical software usually sets the adjusted coefficient of determina-

tion to 7ero .

15.4 Model Assumptions

1. The multiple regression model:

y = Bo+ Prx1 + Paxa + -+ Bprp + € (15.10)

2. The assumptions about the error term ¢  in the multiple regression model:

(1)

The error term € is a random variable with mean or expected value of zero;

that is, F(e) =0

Implication: For given values of x1, 9, - -, x,, the expected, or average, value

of y is given by

E(y)=Bo+ b1+ Poza + - + By (15.11)

Equation (15.11) is the  multiple regression equation . E(y) represents

the average of all possible values of y that might occur for the given values of

L1y Loy "y Tp.

The variance of € is denoted by ¢? and is the same for all values of the inde-

pendent variables x1, 2, -+, x, ; that is,  Var(e) = o2

Implication: The variance of y about the regression line equals 52  and is

the same for all values of x1, s, -, ).
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(3)

The values of € are  independent

Implication: The value of € for a particular set of values for the independent

variables is not related to the value of € for any other set of values.

The error term € is a  normally distributed ~ random variable reflecting the

deviation between the y  value and the  F(y) given by By + 11 +
Bag 4 - -+ + Bz,

Implication: Because By, 51, -+, 0, are _ constants  for the given values of

T1,T2, -, Ty, the dependent variable y is also a  normally distributed

random variable.

3. (Figure 15.5) Consider the following two-independent-variable multiple regression

equation.

E(y) = Bo + fro1 + Poxa

FIGURE 15.5 = Graph of the Regression Equation for Multiple Regression
Analysis with Two Independent Variables

¥y Value of y when
T = T =

Bo

E(y) when

Plane corresponding X =x] and X, = x,

X
5|

Point corresponding to
) s
x; =x7 and x, = x;

4. Note that the value of € shown is the difference  between the actual y value

and the expected value of y, E(y), when z; = 2] and xo = x3.

5. In regression analysis, the term response variable is often used in place of the term

dependent variable . Furthermore, since the multiple regression equation gen-

erates a plane or surface, its graph is called a  response surface
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15.5 Testing for Significance

1. In simple linear regression, both ¢ test and an  F test  provide the same

conclusion; that is, if the null hypothesis is rejected, we conclude that 3, 40 .
2. In multiple regression, the t test and the F' test have different purposes.

(a) The F test is used to determine whether a significant relationship exists be-
tween the dependent variable and the set of all  the independent variables;

we will refer to the F' test as the test for  overall significance

(b) If the F test shows an overall significance, the ¢ test  is used to determine
whether each of the individual independent variables is significant. A separate
t test is conducted for each of the independent variables in the model; we refer

to each of these t tests as a test for  individual significance

3. In the material that follows, we will explain the F' test and the t test and apply
each to the Butler Trucking Company example.

F Test
1. The hypotheses for the F' test involve the parameters of the multiple regression
model.
Hy : Bi=fr=-=8,=0
H, : One or more of the parameters are not equal to zero

2. If Hyisrejected, the test givesus  sufficient statistical evidence  to conclude that

one or more of the parameters are not equal to zero and that the  overall relationship

between y and the set of independent variables 1, x9, -, 2, is  significant

3. However, if Hy cannot be rejected, we do not have  sufficient evidence  to con-

clude that a significant relationship is present.
4. (Review)(Chapter 14)

(a) A mean square is a sum of squares  divided by its corresponding degrees

of freedom.

(112—2) %}EE‘*’% (:) February 19, 2024



Chapter 15 Multiple Regression Page 12/46

(b) In the multiple regression case, the total sum of squares (SST) has  n—1
degrees of freedom, the sum of squares due to regression (SSR) has p
degrees of freedom, and the sum of squares due to error (SSE) has  n—p—1

degrees of freedom.

(c) Hence, the mean square due to regression (MSR)is SSR/p  and the mean
square due to error (MSE)is  SSE/(n—p—1)

(d) MSE provides an unbiased estimate of s> | the variance of the error term
€.
() If Hy:B=pB=--=p,=0 istrue, MSR _ also provides an unbi-

ased estimate of 02, and the value of MSR/MSE should be close to 1
(f) However, if Hy is false, MSR __overestimates 0 and the value of MSR/MSE

becomes larger .

5. To determine how large the value of AMSR/MSE  must be to reject Hy, we

make use of the fact that if /7, is true  and the assumptions  about the

multiple regression model are  valid , the sampling distribution of MSR/MSFE
isan F distribution with p degrees of freedom in the numerator and

n—p—1  in the denominator.
6. F test for overall significance

(a) Hypothesis:

Hy : pi=fa=-=f=0

H, : One or more of the parameters are not equal to zero

(b) Test statistic:
_ MSR

_ e (15.14)
MSFE

(¢) Rejection rule:

i. p-value approach: Reject Hy if  p-value < o

ii. Critical value approach: Reject Hy if F > F,

7p~,n*p71
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TABLE 15.3 ANOVA Table for a Multiple Regression Model with p

Independent Variables

Source

Regression

Error

Total

Sum Degrees
of Squares of Freedom Mean Square
SSR P MSR = a3k
p
SSE
SSE =m@="1 MSE = ———
n-p n—p-—1
SST n—1

F

_ MsR
MSE

(a) Hypotheses:

(b) (Figure 15.6)

7. Butler Trucking Company

Hy
H,

pr=p02=0

f1 and/or By is not equal to zero

FIGURE 15.6 Output for Butler Trucking with Two Independent Variables,

Kilometers Traveled (x,) and Number of Deliveries (x,)

Analysis of Variance

Source DF Adj SS
Regression 2 21.6006
Error 7/ 2.2994
Total 9 23.900
Model Summary

S R-sq R-sq (adj)
573142 00.38% 87.63%
Coefficients
Term Coef SE Coef
Constant —.869 952
Kilometers 103821 00618
Deliveries 923 221

Regression Equation

Adj MS F-Value P-Value
10.8003 32.88 000
3285
T-Value P-Value
= 392
6.18 2000
4.18 004

Time = —.869 + .03821 Kilometers + 923 Deliveries

(¢) MSR = 10.8003 and MSE = 0.3285, F

Fooi127 =955 . With F'=32.88 > 9.55, we reject Hy : 31 = 2 = 0.

(112-2) #stE (D)
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(d) Using a = 0.01, the p-value = 0.000 indicates that we can reject Hy : ) =

B2 = 0 because the p-value is less than o = 0.01.

(e) Conclude that a significant relationship is present between travel time y

and the two independent variables, miles traveled and number of deliveries.

t Test

1. If the F test shows that the multiple regression relationship is significant, a t test

can be conducted to determine the significance of each of the individual pa-

rameters.
2. The t test for individual significance

(a) Hypothesis: For any parameter S;

HO : /% - O
Ha : 6% 7£ 0
(b) Test statistic:
po b (15.15)
Sb;

(¢) Rejection rule:
i. p-value approach: Reject Hy if p-value < a.

ii. Critical value approach: Reject Hoit ¢ > 1,0, 1 orif < —t ., ,

3. In the test statistic, sp, is the estimate of the standard deviation of b;. The value of

sp, Will be provided by the computer software package.

The multiple regression model

Y= sBO + ﬁlxl + 523;2 + -+ Bp—lxp—l + € )

or

Yi = Bo+ Pixig + Pain + -+ BpiTip1 + &, 1=1,---n

(a) In the matrix notation:

y= X,B + € or Yonx1 = anp/gpxl + €nx1-
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(b) Design matrix X:

(c) Use Least-squares to fit a regression line to the data {x;,vy;}! ,, where x; =

{%1, HO P ,Ii,p—l}
QB) = (y-XB)(y-XB)=> (yi—xB)"
=1
oQ , _
95 = “XG-X8)=0
= (X'X)8 =Xy
=  B=b= (XX)'Xy

(d) Variance of the sampling distribution of b;,7 = 1,2, p.

0_2

(n—1)57,(1—R})’

where Sﬁi is the sample variance of variable x; and R? is R-square of the regres-

Var(b;) =

sion of z; on the rest of the explanatory variables of the models (including the
constant term). Note that the variance should be conditional on the observed

values of the explanatory variables.

4. Butler Trucking Company

(a) (Figure 15.6) that shows the output for the t-ratio calculations:
by = 0.06113, by = 0.923, 55, = 0.00989, s3, = 0.221
(b) The test statistic for the hypotheses involving parameters 8; and [s:
t =0.06113/0.00989 = 6.18, t =0.923/0.221 = 4.18

(c) Using a = 0.01, the p-values of 0.000 and (0.004 in the output indi-

cate that we can reject Hy : 1 = 0 and Hy : fo = 0. Hence, both parameters

are statistically significant.

(d) Alternatively, 057 = 3.499 . With 6.18 > 3.499, we reject Hy : 1 = 0.
Similarly, with 4.18 > 3.499, we reject Hy : 5o = 0.
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Multicollinearity

1. We use the term  independent variable  in regression analysis to refer to any

variable being used to predict or explain the value of the dependent variable.

2. The term does not mean, however, that the independent variables  themselves

are independent in any statistical sense. On the contrary, most independent vari-

ables in a multiple regression problem are correlated  to some degree with one

another.

3. Butler Trucking Example

(a) Butler Trucking example involves the two independent variables x; (miles trav-
eled) and x5 (number of deliveries), we could treat the miles traveled as the
dependent variable and the number of deliveries as the independent variable

to determine whether those two variables are themselves related.

(b) Compute the sample correlation coefficient r(xy, z5) = 0.16 and find that some

degree of linear association between the two independent variables.

4. In multiple regression analysis, multicollinearity — refers to the correlation among

the independent variables.

D. Modified Butler Trucking Example, the potential problems of multi-
collinearity.

(a) Consider a modification of the Butler Trucking example. Instead of x5 being
the number of deliveries, let x5 denote the number of gallons of gasoline con-
sumed. Clearly, z; (the miles traveled) and z, are related; that is, we know
that the number of gallons of gasoline used depends on the number of miles

traveled.

(b) We would conclude logically that x; and x5 are highly correlated independent

variables.

(c) Assume that we obtain the equation § = by + byxy + byzo and find that the
F' test shows the relationship to be significant. Then suppose we conduct a
t test on [y to determine whether 5, # 0, and we cannot reject Hy : 51 = 0.
Does this result mean that travel time is not related to miles traveled? Not

necessarily.
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(d) What it probably means is that with  z, already in the model , z1 does

not make a significant contribution to determining the value of y.

(e) This interpretation makes sense in our example; if we know the amount of
gasoline consumed (x3), we do not gain much additional information useful in

predicting y by knowing the miles traveled ().

(f) Similarly, a ¢ test might lead us to conclude 55 = 0 on the grounds that, with
x1 in the model, knowledge of the amount of gasoline consumed does not add

much.

6. To summarize, in ¢ tests for the significance of individual parameters, the
difficulty caused by multicollinearity is that it is possible to conclude that  none
of the individual parameters is significantly different from zero when an  F test

on the overall  multiple regression equation indicates a significant relationship.

7. Statisticians have developed several  tests  for determining whether multicollinear-

ity is high enough to cause problems.

8. According to the rule of thumb test, multicollinearity is a potential problem if the

absolute value of the  sample correlation coefficient exceeds (.7  for any

two of the independent variables.

9. The other types of tests are more advanced and beyond the scope of this text. If
possible, every attempt should be made to avoid including independent variables

that are highly correlated.
10. When multicollinearity is severe,

(a) it is not possible to determine the separate effect of any particular independent

variable on the dependent variable.

(b) we can have difficulty interpreting the results of ¢ tests on the individual pa-

rameters.

(c) Least squares estimates may have the wrong sign.

1.

(a) Multicollinearity in Regression Analysis: Problems, Detection, and Solutions
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https://statisticsbyjim.com/regression/multicollinearity-in-regression-analysis/

(b) Multicollinearity in Regression: Why it is a problem? How to check and fix it
https://towardsdatascience.com/multi-collinearity-in-regression-fe7a2c1467ea

(c) Eight Ways to Detect Multicollinearity
https://www.theanalysisfactor.com/eight-ways-to-detect-multicollinearity/

(d) Multicollinearity (Wikipedia)

https://en.wikipedia.org/wiki/Multicollinearity

15.6 Using the Estimated Regression Equation for

Estimation and Prediction

1. The procedures for estimating the mean value of y and predicting an individual
value of y in multiple regression are similar to those in regression analysis involving

one independent variable.

2. We substitute the given values of x1, x5, - -, z, into the estimated regression equa-

tion and use the corresponding value of § as the  point estimate

3. Butler Trucking example

(a) We want to use the estimated regression equation involving x; (miles traveled)

and z5 (number of deliveries) to develop two interval estimates:

i. A confidence interval  of the mean travel time for all trucks that travel

100 miles and make two deliveries.

ii. A prediction interval  of the travel time for one specific truck that

travels 100 miles and makes two deliveries

(b) Using the estimated regression equation § = —0.869+0.06113x; +0.923z, with

x1 = 100 and x5 = 2, we obtain

§=2.869+0.06113(100) + 0.923(2) = 7.09
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(d)

()

Hence, the point estimate of travel time in both cases is approximately seven

hours.

To develop interval estimates for the mean value of y and for an individual
value of y, we use a procedure similar to that for regression analysis involving
one independent variable. The formulas required are beyond the scope of the
text, but statistical  software  for multiple regression analysis will often
provide confidence intervals once the values of xy,x»,---,x, are specified by

the user.

(Table 15.4)

TABLE 15.4 The 95% Confidence and Prediction Intervals for Butler Trucking

Value of  Value of 95% Confidence Interval 95% Prediction Interval
5% o0 Lower Limit ~ Upper Limit Lower Limit ~ Upper Limit
160 4 BUSS 9.742 ViS63 10.514
80 & 4.127 5.789 3.369 6.548
160 4 8.135 9.742 72363 10.514
160 2 6.258 7.925 5.500 8.683
80 2 3.146 4.924 2.414 5.656
128 2 5232 6.505 4.372 7.366
120 3 6.037 6.936 5.059 915
104 4 5.960 7.637 5.205 8.392
144 3 6917 7.891 5.964 8.844
144 2 5.776 7.184 4.953 8.007
120 4 6.669 8.152 5.865 8.955

Note that the interval estimate for an individual value of y is  wider than

the interval estimate for the expected value of y. This difference simply reflects
the fact that for given values of x1 and x5 we can estimate the mean travel time

for all trucks with ~ more precision ~ than we can predict the travel time for

one specific truck.
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15.7 Categorical Independent Variables

(a)

()

(d)

Thus far, the examples we have considered involved  quantitative inde-

pendent variables such as student population, distance traveled, and number

of deliveries.

In many situations, however, we must work with  categorical  independent

variables such as gender (male, female), method of payment (cash, credit card,

check), and so on.

Example: Johnson Filtration, Inc.

(Background) Johnson Filtration, Inc., provides maintenance service for water-
filtration systems throughout southern Florida. Customers contact Johnson
with requests for maintenance service on their water-filtration systems. To
estimate the service time and the service cost, Johnson' s managers want to

predict the repair time necessary for each maintenance request.

(Dependent variable/Independent variables) Hence, repair time in hours is the
dependent variable. Repair time is believed to be related to two factors, the
number of months since the last maintenance service and the type of repair

problem (mechanical or electrical).

(Data)(Table 15.5)

TABLE 15.5 Data for the Johnson Filtration Example

Service Months Since Repair Time
Call Last Service Type of Repair in Hours
1 2 Electrical 29
2 & Mechanical 3.0
3 8 Electrical 48
4 3 Mechanical 1.8
5 2 Electrical 29
& 7 Electrical 49
7 9 Mechanical 42
8 8 Mechanical 48
9 4 Electrical 44
10 & Electrical 45

(SLR) Let y denote the repair time in hours and x; denote the number of
months since the last maintenance service. The regression model that uses

only x; to predict y is y = By + [f1x1 + €
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(e) (Figure 15.7)

FIGURE 15.7 Output for Johnson Filtration with Months Since Last Service (x,)

as the Independent Variable

Analysis of Variance
Source DF Adj SS Adj MS F-Value P-Value
Regression 1 5.596 5.5960 9.17 016
Error 8 4.880 .6100
Total 9 10.476
Model Summary

S R-sq R-sq (adj)
781022 53.42% 47.59%
Coefficients
Term Coef SE Coef  T-Value P-Value
Constant 2.147 605 B .008
Months Since Last Service 304 .100 3.03 016

Regression Equation

Repair Time (hours) = 2.147 + .304 Months Since Last Service

i. The estimated regression equation is ¢ = 2.147 + 0.304x,

ii. At the 0.05 level of significance, the p-value of  0.016  for the ¢ (or F')
test indicates that the number of months since the last service is signifi-
cantly related to repair time.

iii. R-sq = 53.42% indicates that x; alone explains  53.42% of the

variability — in repair time.

4. To incorporate the type of repair into the regression model, we define

(0 , if the type of repair is mechanical
To =
1, if the type of repair is electrical

5. In regression analysis @9 is called a  dummy  or _ indicator variable

6. Using this dummy variable, we can write the multiple regression model as

y=Bo+ bz + Boxay + €
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7. (Table 15.6) Data for the Johnson Filtration Example with Type of Repair Indicated
by a Dummy Variable (z5 = 0 for Mechanical; zo = 1 for Electrical)

TABLE 15.6 Data for the Johnson Filtration Example with Type of Repair Indicated

by a Dummy Variable (x, = 0 for Mechanical; x, = 1 for Electrical)

Months Since

Customer Last Service (x)
1 2
2 6
3 8
4 3
5 2
b 7
i 9
8 8
5 4

10 [

Type of

Repair Time

Repair (x;) in Hours (y)

e = R s s Ny Sy R

239
3.0
4.8
1.8
219
4.9
4.2
4.8
4.4
4.5

8. (Figure 15.7) Output for Johnson Filtration with Months Since Last Service (z;) as

the Independent Variable

FIGURE 15.8 Output for Johnson Filtration with Months Since Last Service

(x4) and Type of Repair (x;) as the Independent Variables

Analysis of Variance

Source DF Adj SS
Regression 2 9.0009
Error 7 14751
Total 9 10.4760
Model Summary

S R-sq R-sq (adj)
.459048 85.92% 81.90%
Coefficients
Term Coef
Constant 930
Months Since Last Service 3876
Type of Repair 1.263

Regression Equation

AdjMS  F-Value
4.50046 21.36
21073

SE Coef T-Value

467 1.99
.0626 6.20
314 4.02

P-Value
001

P-Value
087
000
005

Repair Time (hours) = .930 + .3876 Months Since Last Service + 1.263 Type of Repair

(a) The estimated multiple regression equation is

y = 0.93 4 0.3876x; + 1.263x5

(15.17)

(b) At the 0.05 level of significance, the p-value of

0.001 associated with the F'

test (_ F'=21.36 ) indicates that the regression relationship is significant.
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(¢) The t test shows that both months since last service (p-value =  0.000 )

and type of repair (p-value =  (.005 ) are statistically significant.

(d) In addition, R-Sq = 85.92%  and R-Sq (adj) = 81.9% indicate that
the estimated regression equation does a good job of explaining the variability

in repair times.

(e) Thus, equation (15.17) should prove helpful in predicting the repair time nec-

essary for the various service calls.

Interpreting the Parameters

1. The multiple regression equation for the Johnson Filtration example is
E(y) = o+ fiz1 + Boxa (15.18)

2. Consider the case when z3 = 0 (mechanical repair). Using  F(y|mechanical)

to denote the mean or expected value of repair time given a mechanical repair, we

have

E(y|mechanical) = 5, + fiz1 + 52(0) = Bo+ fimy (15.19)

3. Similarly, for an electrical repair (zo = 1), we have

E(ylelectrical) = By + By + Bo(1) = (Bo + Ba) + By (15.20)

4. Comparing equations (15.19) and (15.20), we see that the mean repair time is a
linear function of o, for both mechanical and electrical repairs. The slope of

both equations is 3, , but the y-intercept  differs.

5. The y-interceptis 3,  inequation (15.19) for mechanical repairs and (3, + /3)

in equation (15.20) for electrical repairs.

6. The interpretation of 3, is that it indicates the  difference  between the  mean repair time

for an electrical repair and the mean repair time for a mechanical repair.

(a) If B, >0 ,themeanrepair time for an electrical repair willbe  greater than

that for a mechanical repair;
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(b) if 3, <0 ,themean repair time for an electrical repair will be  less than

that for a mechanical repair.

(¢) if B, =0, there is no difference  in the mean repair time between

electrical and mechanical repairs and the type of repair is  not related  to

the repair time.

7. Using the estimated multiple regression equation ¢ = 0.93 + 0.3876x; + 1.263x5, we
see that 0.93 is the estimate of 5y and 1.263 is the estimate of Js.

8. Thus, when x5 = 0 (mechanical repair)
§=0.93+0.38762,  (15.21)
and when xo = 1 (electrical repair)

g =0.93 4+ 0.3876x; + 1.263(1) = 2.193 4 0.38761 (15.22)

9. In effect, the use of a dummy variable for type of repair provides  two estimated

regression equations  that can be used to predict the repair time, one corre-

sponding to mechanical repairs and one corresponding to electrical repairs.

10. In addition, with Sy = 1.263, we learn that, on average, electrical repairs require

1.263 hours longer  than mechanical repairs.

11. (Figure 15.9) Scatter Diagram for the Johnson Filtration Repair Data

FIGURE 15.9 Scatter Diagram for the Johnson Filtration Repair Data

from Table 15.6

Repair Time (hours)

M = mechanical repair
E = electrical repair

Months Since Last Service
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More Complex Categorical Variables

1.

If a categorical variable has k levels, k—1 dummy variables are required, with each

dummy variable being coded as (O or 1 .

Suppose a manufacturer of copy machines organized the sales territories
for a particular state into three regions: A, B, and C. The managers want to use

regression analysis to help predict the number of copiers sold per week.

With the number of units sold as the dependent variable, they are considering several
independent variables (the number of sales personnel, advertising expenditures, and

o on).

Suppose the managers believe sales region is also an important factor in predicting
the number of copiers sold. Because sales region is a categorical variable with three
levels, A, B and C, we will need 3—1 =2  dummy variables to represent the

sales region. Each variable can be coded 0 or 1:
1, if sales region B
T1 =
' 0, otherwise
1, if sales region C
To =
0, otherwise

We have the following values of x; and x5:

Region x; x9

A 0 0

B 1 0

C 0 1
Observations corresponding to region A would be coded 2, = 0,2, =0 ; obser-
vations corresponding to region B would be coded 2, = 1,2, =0 ; and obser-

vations corresponding to region C would be coded 2, = 0,2, =1

The regression equation relating the expected value of the number of units sold,

E(y), to the dummy variables would be written as

E(y) = Bo+ Biz1 + Bors

(112—2) %;E%-i—% (:) February 19, 2024



Chapter 15 Multiple Regression Page 26/46

8. To help us interpret the parameters [y, (1, and [y, consider the following three

variations of the regression equation.

E(ylregion A) = By + £1(0) + B2(0) = fo
E(y|region B) = [y + B1(1) + B2(0) = Bo + b4
E(y|region C) = fy+ B1(0) + B2(1) = Bo + B

(a) Thus, By is the mean or expected value of sales for — region A

(b) Biisthe difference  between the mean number of units soldin  region B

and the mean number of units sold in  region A ;

(c) and fyisthe difference  between the mean number of units soldin  region C

and the mean number of units sold in  region A

9. Two dummy variables were required because sales region is a categorical variable

with three levels.

10. The assignment was  arbitrary . For example, we could have chosen z; = 1,29 =

0 to indicate region A, 1 = 0,25 = 0 to indicate region B, and z; = 0,25 = 1 to

indicate region C.

Region z; x9

A 1 0
B 0 0
C 0 1

In that case, 8; would have been interpreted as the mean difference between regions

A and B and S as the mean difference between regions C and B.

11. The important point to remember is that when a categorical variable has k levels,
k—1 dummy variables are required in the multiple regression analysis. Thus, if the
sales region example had a fourth region, labeled D, three dummy variables would

be necessary. For example, the three dummy variables can be coded as follows.

{ 1, if sales region B {
xr = Ty =

1, if sales region C 1, if sales region D
Ta =
0, otherwise ’

0, otherwise 0, otherwise
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15.8 Residual Analysis

1. Standardized Residual for Observation ¢

~

L (15.23)

Syi—i

where s,,_;, is the standard deviation of residual <.

2. Standard Deviation of Residual ¢

Syi—g; = 9\/1—7h, (15.24)

where s is the standard error of the estimate and h; is the  leverage of obser-
vationi. ( h, =H; , H=XXX)"'X )

3. (Chapter 14) the leverage of an observation is determined by how far the values of

the independent variables  are from their means .

4. The computation of h;, s,,_g, and hence the standardized residual for observation
¢ in multiple regression analysis is too complex to be done by hand. However, the
standardized residuals can be easily obtained as part of the output from statistical

software.

D. Butler Trucking example

(a) (Table 15.7) the estimated regression equation y = —0.869 + 0.03821x; +
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TABLE 15.7 Residuals and Standardized Residuals for the Butler Trucking

Regression Analysis

Kilometers Travel Predicted
Traveled Deliveries Time Value Residual Standardized

(x4) (x3) () (y) y—y Residual
160 4 93 8.9384¢6 361541 .78344

80 3 4.8 4.95830 —.158304 —-.34962
160 4 8.9 8.93846 —.038460 -.08334
160 2 6.5 7.09161 -.591609 -1.30929

80 2 4.2 4.03488 165121 38167
128 2 6.2 5.86892 331083 .65431
120 3 7.4 6.48667 913331 1.68917
104 4 6.0 6.79875 —.798749 -1.77372
144 3 7.6 7.40369 196311 36703
144 % 6.1 6.48026 —.380263 —-.77639

(b) (Figure 15.10) This standardized residual plot does not indicate any unusual

abnormalities. All the standardized residuals are between —2 and +2 ;

hence, we have no reason to question the assumption that the error term e is

normally distributed. We conclude that the model assumptions are  reasonable

FIGURE 15.10 Standardized Residual Plot for Butler Trucking

+2

Standardized Residuals

(c) (Recall Section 14.8) A normal probability plot  also can be used to deter-

mine whether the distribution of € appears to be normal. The same procedure

is appropriate for multiple regression.

(112-2) #EtE (D) February 19, 2024



Chapter 15 Multiple Regression Page 29/46

Detecting Outliers

1. An outlier is an observation that is unusual  in comparison with the other data.

An outlier does not fit the  pattern of the other data.

2. (Chapter 14) An observation is classified as an outlier if the value of its _ standardized residual

is less than —2 or greater than +2.

3. (Table 15.7) Applying this rule to the standardized residuals for the Butler Trucking

example, We do not detect any outliers in the data set.

4. In general, the presence of one or more outliers in a data set tends to increase s |,

the standard error of the estimate, and hence increase , the standard

Sylfgz
deviation of residual 1.

5. Because s,,_; appears in the denominator of the formula for the standardized resid-

ual (15.23), the size of the standardized residual will  decrease  as s increases

As a result, even though a residual may be unusually large, the large denominator
in expression (15.23) may cause the standardized residual rule to fail to identify the

observation as being an outlier.

6. We can circumvent this difficulty by using a form of the standardized residuals called

studentized deleted residuals

Studentized Deleted Residuals and Outliers

1. Suppose the ith observation is deleted from the data set and a new estimated re-

gression equation is developed with the remaining n—1 observations.

2. Let  s;  denote the standard error of the estimate based on the data set with
the 4th  observation deleted. If we compute the standard deviation of residual
i using s(;) instead of s, and then compute the standardized residual for observation

i using the  revised s,, ;5  value, the resulting standardized residual is called a

studentized deleted residual

3. If the ith observation is an outlier, s;y willbe  less  than s. The absolute value of

the ith studentized deleted residual therefore will be  larger than the absolute

value of the standardized residual.
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4. Studentized deleted residuals may detect outliers that standardized residuals do not

detect.

5. The t distribution can be used to determine whether the studentized deleted resid-

uals indicate the presence of outliers.

(a) If we delete the ith observation, the number of observations in the reduced

data set is n—1; in this case the error sum of squares has  (n—1)—p—1

degrees of freedom.

(b) For the Butler Trucking example with n = 10 and p = 2, the degrees
of freedom for the error sum of squares with the ith observation deleted is

9—2—1 = 6. At a = 0.05 level of significance, the ¢ distribution shows that

with six degrees of freedom, ;954 = 2.447

(c) If the value of the ith studentized deleted residual is  less than —2.447

or greater than +2.447 , we can conclude that the ¢th observation is an

outlier.

(d) (Table 15.8) Butler Trucking example, outliers are not present in the data set.

TABLE 15.8 Studentized Deleted Residuals for Butler Trucking

Kilometers Traveled Deliveries Travel Time Standardized Studentized
(%) (x,) (y) Residual Deleted Residual
160 4 93 .78344 75939

80 3 4.8 —.34962 —.32654
160 4 8.9 —.08334 —.07720
160 2 6.5 —1.30929 —-1.39494

80 2 4.2 38167 35709
128 2 6.2 65431 62519
120 3 7.4 1.68917 2.03187
104 4 6.0 —1.77372 —-2.21314
144 3 7.6 36703 34312
144 2 6.1 —.77639 —.75190

Influential Observations

1. (Section 14.9) we discussed how the leverage of an observation can be used to identify

observations for which the value of the independent  variable may have a strong
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influence on the regression results.

2. The leverage of an observation, denoted h;, measures how far the values of the

independent variables are from their mean values.

3. We use the rule of thumb 7, > 3(p+1)/n  to identify influential observations.

4. Butler Trucking example (n = 10,p = 2)

(a) The critical value for leverage is 3(2 4 1)/10 = 0.9.

(b) (Table 15.9) Because h; does not exceed 0.9, we do not detect influential ob-

servations in the data set.

TABLE 15.9 Leverage and Cook’s Distance Measures for Butler Trucking

Kilometers Traveled Deliveries Travel Time  Leverage Cook’s D
(x4) (x2) (y) (h) (D)
160 4 5.5 .351704 110994
80 3 4.8 .375863 .024536
160 4 8.9 .351704 001256
160 2 65 .378451 347923
80 2 4.2 430220 036663
128 2 6.2 .220557 .040381
120 3 7.4 .110009 117562
104 4 6.0 .382657 .650029
144 3 7.6 129098 006656
144 2 6.1 269737 074217

Using Cook’ s Distance Measure to Identify

1. A problem that can arise in using leverage to identify influential observations is that

an observation can be identified as having  high leverage  and not necessarily

be influential in terms of the resulting estimated regression equation

(a) (Table 15.10) Because the leverage for the eighth observationis .91 > 0.75

(the critical leverage value), this observation is identified as influential.
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TABLE 15.10

Data Set lllustrating
Potential Problem Using
the Leverage Criterion

Leverage

X Yi h;

1 18 204170

1 21 204170

2 22 164205

3 21 138141

4 23 125977

4 24 125977

5 26 127715
15 39 909644

(b) (Figure 15.11) the estimated regression equation: y = 18.2 4+ 1.39x

FIGURE 15.11 Scatter Diagram for the Data Set in Table 15.10

35

30

115

y

The estimated regression
equation with all the data is
F=182+ 1.39x

Note: If the point (15, 39) is deleted,
the estimated regression
equation is ¥ = 18.1 + 1.42x

(c) Delete the observation z = 15,y = 39 from the data set and fit a new estimated

regression equation to the remaining seven observations; the new estimated

regression equation

is § = 18.1 + 1.42z

(d) We note that the y-intercept and slope of the new estimated regression equation
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are very close to the values obtained using all the data.

(e) Although the leverage criterion identified the eighth observation as influential,
this observation clearly had little influence on the results obtained. Thus, in
some situations using only leverage to identify influential observations can lead

to wrong conclusions.

2. Cook' s distance measure uses both the leverage of observation 7, h;, and the
residual for observation i, (y;—%;), to determine whether the observation is influen-

tial.

D; = (yi — 9:)° [( hi ]

(p + 1)82 1-— h,/,j)Q

(a) The value of Cook’ s distance measure will be large and indicate an influential

observation if the residual or the leverage is large.

(b) As a rule of thumb, values of [, > 1  indicate that the ith observation is
influential and should be studied further.

(c) (Table 15.9) Cook’ s distance measure for the Butler Trucking prob-
lem. Observation 8 with D; = 0.650029 < 1, we should not be concerned about

the presence of influential observations in the Butler Trucking data set.

15.9 Logistic Regression

1. In many regression applications, the dependent variable may only assume  two discrete values

2. A bank might want to develop an estimated regression equation for pre-
dicting whether a person will be approved for a credit card. The dependent variable

can be coded as ¢y =1  if the bank approves  the request for a credit card

and y =0 if the bank rejects  the request for a credit card.

3. Using logistic regression we can estimate the  probability that the bank

will approve the request for a credit card given a particular set of values for the

chosen independent variables.
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4. Simmons Stores. Let us consider an application of logistic regression

involving a direct mail promotion being used by Simmons Stores.

(a)

()

Simmons owns and operates a national chain of women’s apparel stores. Five
thousand copies of an expensive four-color sales catalog have been printed,
and each catalog includes a coupon that provides a $50 discount on purchases
of $200 or more. The catalogs are expensive and Simmons would like to send

them to only those customers who have a high probability of using the coupon.

Management believes that annual spending at Simmons Stores and whether a
customer has a Simmons credit card are two variables that might be helpful in

predicting whether a customer who receives the catalog will use the coupon.

Simmons conducted a pilot study using a random sample of 50 Simmons credit
card customers and 50 other customers who do not have a Simmons credit card.
Simmons sent the catalog to each of the 100 customers selected. At the end
of a test period, Simmons noted whether each customer had used her or his

coupon.

(Table 15.11) The amount each customer spent last year at Simmons is shown
in thousands of dollars and the credit card information has been coded as 1 if
the customer has a Simmons credit card and 0 if not. In the Coupon column,

a 1 is recorded if the sampled customer used the coupon and 0 if not.

TABLE 15.11 Partial Sample Data for the Simmons Stores Example

Annual Spending

Customer ($1000) Simmons Card Coupon
1 A A2 1 0
2 ST 1 0
= ZAEE 1 0
4 3.924 0 0
5 2.528 1 0
6 2473 0 1
7 2.384 0 0
8 7.076 0 0
g 1.182 1 1

10 3.345 0 0

We might think of building a  multiple regression ~ model using the data

in Table 15.11 to help Simmons estimate whether a catalog recipient will use
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the coupon. We would use Annual Spending ($1000) and Simmons Card as

independent variables and Coupon as the dependent variable.

5. Because the dependent variable may only assume the values of 0 or 1, however, the

ordinary multiple regression ~ model is not applicable. This example shows the

type of situation for which logistic regression was developed.

Logistic Regression Equation

1. In multiple regression analysis, the mean or expected value of y is referred to as the

multiple regression equation.
E(y) = Bo+ Biz1 + Baxa + -+ + Bpz,  (15.26)

2. (Logistic Regression Equation) In logistic regression, statistical theory as well
as practice has shown that the relationship between E(y) and x4, o, - - -, x, is better
described by the following nonlinear equation.

ePot+Brz1+B2ma++BpTp

E(y) = (15.27)

1 4 ePotBizi+Pazat-+Ppap

3. If the two values of the dependent variable y are coded as 0 or 1, the value of E(y)

in equation (15.27) provides the  probability that y =1  given a particular set

of values for the independent variables x1,zg, - -, x,.

4. Because of the interpretation of E(y) as a probability, the logistic regression equation

is often written:

E(y)= P(y=1lzy, 1z, 2,) (15.28)

D. Suppose the model involves only one independent variable x and the
values of the model parameters are §; = —7 and ; = 3. The logistic regression

equation corresponding to these parameter values is
6/30-9'31"15 6—7—0—3:1:

E(y) B P(y B 1|T) B 1 + ePothriz - 14+ e 7t32 (15'29)

(a) (Figure 15.12) shows a graph of equation (15.29). Note that the graph is
S-shaped . The value of E(y) ranges from (0to 1 .
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FIGURE 15.12 Logistic Regression Equation for B, = —7 and B, = 3

1L{0)

0.8

0.6

E(y)

0.4

0.27
0.2

Independent Variable (x)

(b) For example, when z = 2, E(y) is approximately 0.27. Also note that the value
of E(y) gradually approaches 1  as the value of x becomes larger  and

the value of E(y) approaches () as the value of x becomes  smaller .

(¢) For example, when z = 2, E(y) = 0.269. Note also that the values of E(y), rep-

resenting  probability , increase fairly rapidly as _ increases from 2 to 3

The fact that the values of F(y) range from 0 to 1 and that the curve is S-
shaped makes equation (15.29) ideally suited to model the probability the

dependent variable is equal to 1.

Estimating the Logistic Regression Equation

1. The nonlinear form  of the logistic regression equation makes the method of

computing estimates more complex and beyond the scope of this text. We use

statistical  software  to provide the estimates.

2. The estimated logistic regression equation is

ebotb1z1+bozat+bpzyp

= estimate of P(y = l|z1, 29, -+,2,) = (15.30)

1 + ebotbizitbazat-+bpzp

3. Here, § provides an  estimate of the probability that y = 1 given a particular

set of values for the independent variables.
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4. Simmons Stores

(a) The variables are defined:

{ 0 if the customer did not use the coupon
y =

1 if the customer used the coupon
r1 = annual spending at Simmons Stores ($1000s)
) 0 if the customer does not have a Simmons credit card
"o { 1 if the customer has a Simmons credit card

(b) Thus, we choose a logistic regression equation with two independent variables.
€b0+b1561+b2562

E(y) = (15.31)

1 + €b0+blm1+bgm2

Using the sample data (see Table 15.11), we used statistical software to com-

pute estimates of the model parameters by, b1, and bs.

(¢) (Figure 15.13)

FIGURE 15.13 Logistic Regression Output for the Simmons Stores Example

Significance Tests

Term Degrees of Freedom b p-Value
Whole Model 2 13.63 .0011
Spending 1 7.56 .0060
Card 1 6.41 .0013
Parameter Estimates

Term Estimate Standard Error

Intercept —2.146 DY

Spending 342 129

Card 1.099 44

Odds Ratios

Term Odds Ratio Lower 95% Upper 95%

Spending 1.4073 1.0936 1.8109

Card 3.0000 1.2550 7.1730

(d) We see that fy = —2.146, §; = 0.342, and §y = 1.099. Thus, the estimated

logistic regression equation is

e—2.146+0.342:01+1.099x2

¥=73 T 21461034221 +1.09925

(15.32)
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(e) An estimate the probability of using the coupon for customers who spend $2000
annually and do not have a Simmons credit card is approximately 0.19 (z; = 2

and zy = 0):

o—2-146+0.342(2)+1.099(0) o—1.462
j = : = = (.1882
1 + e—2-146+0.342(2)+1.099(0) 1 4 e—1462

(f) An estimate the probability of using the coupon for customers who spent $2000
last year and have a Simmons credit card is approximately 0.41. (z; = 2 and
xo =1):

—2.1464-0.342(2)+1.099(1) —0.363

. e e
Yy=1 4 e-2146+0.342(2)+1.099(1) | 4 —0.363

= 0.4102

(g) It appears that the probability of using the coupon is  much higher for

customers with a Simmons credit card.

(h) Before reaching any conclusions, however, we need to assess the statistical

significance of our model

Testing for Significance

1. Testing for significance in logistic regression is similar to testing for significance in

multiple regression.

2. First we conduct a test for  overall significance . For the Simmons Stores ex-

ample, the hypotheses for the test of overall significance follow:

Hy Bi=pP2=0

H, : One or both of the parameters is not equal to zero

(a) The test for overall significance is based upon the value of a 2 test  statis-
tic. If the null hypothesis is true, the sampling distribution of y? follows a chi-

square distribution with degrees of freedom equal to the number of independent variables

in the model.

(b) (Figure 15.13) The calculations of x? is  beyond the scope of the book

The value of x? and its corresponding p-value in the Whole Model row of the
Significance Tests table is 13.63 and its p-value is 0.0011. Thus, at any level
of significance a > 0.0011, we would reject the null hypothesis and conclude

that the overall model is significant.
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(¢) (NOTE:
i. Logistic Regression: https://online.stat.psu.edu/stat462/node/207/
ii. Logistic regression (Wikipedia): https://en.wikipedia.org/wiki/Logistic_

regression

3. If the x* test shows an overall significance, another 2 test can be used to

determine whether each of the individual  independent variables is making a

significant contribution to the overall model.

(a) For the independent variables z;, the hypotheses are

HO/BIZO Haﬁz#o

(b) If the null hypothesis is true, the sampling distribution of y? follows a chi-

square distribution with one degree of freedom.

(¢) (Figure 15.13) The Spending and Card rows of the Significance Tests table of
Figure 15.13 contain the values of x? and their corresponding p-values test for
the estimated coefficients. Suppose we use a = 0.05 to test for the significance

of the independent variables in the Simmons model.

(d) For the independent variable Spending (1) the x* value is  7.56  and the
corresponding p-value is  0.0060 . Thus, at the 0.05 level of significance we

can reject Hy : 51 = 0.

(e) In a similar fashion we can also reject Hy : S2 = 0 because the p-value corre-

sponding to Card’s 2 =6.41 is _ 0.0013 . Hence, at the 0.05 level of

significance, both independent variables are statistically significant.

Managerial Use

1. We described how to develop the estimated logistic regression equation and how to

test it for significance.

2. For Simmons Stores, we already computed P(y = 1|21 = 2,20 = 1) =
0.4102 and P(y = 1|y = 2,25 = 0) = 0.1881. These probabilities indicate that

for customers with annual spending of $2000 the presence of a Simmons credit card

increases the probability — of using the coupon.
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3. (Table 15.12) The estimated probabilities for values of annual spending ranging from
$1000 to $7000 for both customers who have a Simmons credit card and customers

who do not have a Simmons credit card.

TABLE 15.12 Estimated Probabilities for Simmons Stores

Annual Spending
$1000 $2000 $3000 $4000 $5000 $6000 $7000

Credit Yes .3307 4102 4948 5796 .6599 .7320 7936
Card No 1414 .1881 .2460 .3148 .3927 4765 5617

4. How can Simmons use this information to better target customers for the new
promotion? Suppose Simmons wants to send the promotional catalog only to cus-

tomers who have a (.40 or higher =~ probability of using the coupon. Using the

estimated probabilities in Table 15.12, Simmons promotion strategy would be:

(a) Customers who have a Simmons credit card: Send the catalog to every cus-

tomer who spent a$2000 or more last year.

(b) Customers who do not have a Simmons credit card: Send the catalog to every

customer who spent  $6000  or more last year.

5. The probability of using the coupon for customers who do not have a Simmons
credit card but spend $5000 annually is  (0.3922 . Thus, Simmons may want to

consider revising this strategy by including those customers who do not have

a credit card, as long as they spent  $5000  or more last year.

Interpreting the Logistic Regression Equation

1. With logistic regression, it is difficult to interpret the relation between the inde-

pendent variables and the  probability that y =1  directly because the logistic

regression equation is  nonlinear

2. The relationship can be interpreted indirectly using a concept called the  odds ratio

HLE),
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3. The odds (BF8) in favor of an event occurring is defined as the probability the

event  will occur divided by the probability the event  will not occur . In

logistic regression the event of interest is always =1 .

4. Given a particular set of values for the independent variables, the odds in favor of
y = 1 can be calculated as follows:
Py = 1|y, 29, -, 1) Py = 1|z, 29, -, 1)

odds = = (15.33)
P(y = 0|zy, 29, -, 7)) 1 — Py =1z, 29, -, 7p)

5. The odds ratio is the odds that y = 1 given that one of the independent variables
has been increased by  one unit (odd,;)  divided by the odds that y = 1 given

no change  in the values for the independent variables  (odd,,) .

(a) Odds Ratio
odd g

Oddso
(b) For example, suppose we want to compare the odds of using the coupon for

Odds Ratio = (15.34)

customers who spend $2000 annually and have a Simmons credit card (z; = 2
and x5 = 1) to the odds of using the coupon for customers who spend $2000

annually and do not have a Simmons credit card (z; = 2 and 25 = 0).

(c) We are interested in interpreting the effect of a one-unit increase in the independent

variable z5. In this case
Ply=1lx; =229 =1)

Oddsl =
1—Ply=1lzy =2,29 = 1)

and
Py =1lz1 = 2,29 = 0)

1 — Py =1z = 2,29 = 0)
(d) Previously we showed that an estimate of the probability that y = 1 given

Oddso =

r1 = 2 and x5 = 1 is 0.4102, and an estimate of the probability that y = 1
given 1 = 2 and x5 = 0 is 0.1881. Thus,
0.4102

timate of oddyy, = —— = 0.
estimate of oddg 104102 0.6956
and
0.1881
timate of oddyy = —————— = 0.231
estimate of oddgs T 01851 0.2318
The estimated odds ratio is
0.6956

estimated odds ratio = = 3.00
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10.

(e) Thus, we can conclude that the  estimated odds  in favor of using the

coupon for customers who spent $2000 last year and have a Simmons credit

card are 3 times greater than  the estimated odds in favor of using the

coupon for customers who spent $2000 last year and do not have a Simmons

credit card.

The odds ratio measures the impact on the odds of a one-unit increasein  only one

of the independent variables.

The odds ratio for each independent variable is computed while holding all the
other independent variables constant . But it does not matter what constant
values are used for the other independent variables. For instance, if we computed
the odds ratio for the Simmons credit card variable (z3) using $3000, instead of
$2000, as the value for the annual spending variable (x7), we would still obtain the

same value  for the estimated odds ratio (3.00). Thus, we can conclude that

the estimated odds of using the coupon for customers who have a Simmons credit
card are 3 times greater than the estimated odds of using the coupon for customers

who do not have a Simmons credit card.

(Figure 15.13) the estimated odds ratios for each of the independent variables. The
estimated odds ratio for Spending (z1) is  1.4073  and the estimated odds ratio
for Card (z2) is  3.0000 .

Let us now consider the interpretation of the estimated odds ratio for the continuous
independent variable 1. The value of 1.4073 in the Odds Ratio column of the output

tells us that the estimated odds  in favor of using the coupon for customers who

spent $3000 last year is  1.4073 times greater than  the estimated odds in favor

of using the coupon for customers who spent $2000 last year.

A unique relationship exists between the  odds ratio for a variable and its

corresponding  regression coefficient . For each independent variable in a logistic

regression equation it can be shown that

Odds ratio = e
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(a) To illustrate this relationship, consider the independent variable z; in the

Simmons example. The estimated odds ratio for x; is
Estimated odds ratio = e” = %34 = 1.407
Similarly, the estimated odds ratio for x5 is

Estimated odds ratio = e? = €% = 3.000

(b) |7
R ebotbiz1 R 1
b= 1+ ebO+b11'1 ’ 1= p= 14+ ebo+b1x1
hl(ﬁ) — hl(l — ]5) = ln(eb0+b1z1) _ ln(l 4 €b0+b1z1) _ ln(l) 4 ln(l + eb0+b1961)
p
1 = by+b
n<1 — ]3> 0+ 0124
p — gbotbizy
1—p
p p
Tﬁ’xl:o = < Tﬁ’azlzl = ehth
by

= odds ratio|;—1/y—0 = €

11. The odds ratio for an independent variable represents the  change in the odds

for a  one unit  change in the independent variable holding all the other inde-

pendent variables  constant .

(a) Suppose that we want to consider the effect of a change of more than one
unit, say c¢ units. For instance, suppose in the Simmons example that we
want to compare the odds of using the coupon for customers who spend $5000
annually (x; = 5) to the odds of using the coupon for customers who spend
$2000 annually (x; = 2). In this case ¢ = 5—2 = 3 and the corresponding

estimated odds ratio is

ecbl _ 63(0.342) — 61‘026 =279

(b) This result indicates that the estimated odds of using the coupon for customers

who spend $5000 annually is  2.79 times  greater than the estimated odds

of using the coupon for customers who spend $2000 annually.

(112—2) %ﬁgﬁ'%ﬂ (:) February 19, 2024



Chapter 15 Multiple Regression Page 44/46

(¢) In other words, the estimated odds ratio for an increase of $3000 in annual

spending is 2.79.

(d) In general, the odds ratio enables us to compare the odds for two different
events. If the value of the odds ratio is 1 , the odds for both events
are the same. Thus, if the independent variable we are considering (such as

Simmons credit card status) has a  positive impact ~ on the probability of

the event occurring, the corresponding odds ratio will be  greater than 1

12. (Figure 15.13) Most statistical software packages provide a confidence interval for
the odds ratio. The Odds Ratio table in Figure 15.13 provides a 95% confidence

interval for each of the odds ratios.

(a) For example, the point estimate of the odds ratio for z; is 1.4073 and the
95% confidence interval is  1.0936 to 1.8109 . Because the confidence in-

terval does not contain the value of 1 , we can conclude that x; has a

significant ~ relationship with the estimated odds ratio.

(b) Similarly, the 95% confidence interval for the odds ratio for z5is  1.2550 to 7.1730

Because this interval does not contain the value of 1, we can also conclude that

xo has a significant relationship with the odds ratio.

Logit Transformation

1. It can be shown that

In(odds) = By + B1x1 + Baza + - + By,

2. This equation shows that the natural logarithm of the odds in favor of y = 1 is
a linear function of the independent variables. This linear function is called the

logit . We will use the notation  g(xy,25,---,2,)  to denote the logit.

3. Logit
g(xh Loy 7xp) = 60 + Blwl + 62552 + 4 5p$p (1535)

4. Substituting g(x1, xa, - - -, ;) for fo + frx1 + foxe + - - - + B,x, in equation (15.27),
we can write the logistic regression equation as
eg(xl,xg,“.,a:p)

E(y) = (15.36)

1+ eg(:l;l,:l;z,...,:l;p)
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5. Once we estimate the parameters in the logistic regression equation, we can compute

an estimate of the logit. Using §(x1, 22, -+, x,) to denote the estimated logit, we
obtain
Estimated Logit  g(zy, 29, -, xp) = by + b1y + baxa + - - + by, (15.37)

6. Thus, in terms of the estimated logit, the estimated regression equation is

6b0+b1x1+b29€2+"-+bp1p 6@(%@2#"@;7)
= = _ (15.38)
1 4 ebotbizitbazat--+byzp 1 4 edlw1,w2,mp)
7. For the Simmons Stores example, the estimated logit is
g(x1,me) = —2.146 + 0.342x1 + 1.099x
and the estimated regression equation is
R eg(:z;l,:cg) 6—2.146+0.342II}1+1.099.’L’2
y= 1 + ed(z1,22) - + ¢—2.146+0.3422,+1.099z5

Thus, because of the unique relationship between the estimated logit and the esti-
mated logistic regression equation, we can compute the estimated probabilities for

Simmons Stores by dividing e9(*1%2) by 1 + ed(@1,72),
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Chapter 17: Time Series Analysis and Forecasting I
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25 et

17.1 Time Series Patterns

time series: A  time series  is a sequence of observations on a variable measured

at successive points in time or over successive periods of time.

The measurements may be taken every hour, day, week, month, or year, or at any

other  regular interval . (this textbook limits the discussion to time series in

which the values of the series are recorded at equal intervals)

The pattern  of the data is an important factor in understanding how the time
series has behaved in the past . If such behavior can be expected to continue in
the future , we can use the past pattern to guide us in selecting an appropriate

forecasting ~ method.

A time series plot  is a graphical presentation of the relationship between time

and the time series variable; time  is on the horizontal axis and the time series
values  are shown on the vertical axis. A time series plot is useful to identify

the underlying pattern in the data.

Some of the common types of data patterns that can be identified when examining
a time series plot: horizontal pattern, trend pattern, seasonal pattern, trend and

seasonal pattern, and cyclical pattern.
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Horizontal Pattern

1. A horizontal pattern exists when the data

around a

fluctuate constant mean

2. (Table 17.1) (Figure 17.1) These data show the number of gallons of
gasoline sold by a gasoline distributor in Bennington, Vermont, over the past 12

weeks.
TABLE 17.1
o
Gasoline Sales Time
Series 100
Sales (1000s

Week of gallons) _ e

1 17 £

2 21 £ 60f

3 19 2

e

6 16 &

7 20 20 |

8 18

9 22 0 1 1 1 1 1 1 1 1 1 1 1 1
10 20 0 I 2 3 4 5 6 71 8 9 10 11 12
1 15 Week

12 22

The average value or mean for this time series is 19.25 gallons (1000s) per week.
Although

horizontal pattern.

random variability ~ is present, we would say that these data follow a

The term  stationary time series is used to denote a time series whose statistical

properties are  independent of time

In particular this means that

(a) The process generating the data has a  constant mean

(b) The variability of the time series is over time.

constant

A time series plot for a stationary time series will always exhibit a  horizontal pattern

But simply observing a horizontal pattern is not sufficient evidence to conclude that

the time series is stationary.

More advanced texts on forecasting discuss procedures for determining if a time
series is stationary and provide methods for transforming a time series that is not

stationary into a stationary series.
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7. Changes in business conditions can often result in a time series that has a horizontal

pattern  shifting  to a new level.

(a) For instance, suppose the gasoline distributor signs a contract with
the Vermont State Police to provide gasoline for state police cars located in

southern Vermont. With this new contract, the distributor expects to see a

major increase in weekly sales starting in week 13.

(b) (Table 17.2) The number of gallons of gasoline sold for the original time series
and for the 10 weeks after signing the new contract.

TABLE 17.2

Gasoline Sales Time
Series After Obtaining
the Contract with the
Vermont State Police

Sales (1000s

Week of liters)
1 68
2 84
3 76
4 92 FIGURE 17.2 Gasoline Sales Time Series Plot After Obtaining the
5 72 Contract with the Vermont State Police
6 64
7 80 160
8 72 140
9 88
10 80 EIZO_
1 60 3
12 88 g 1or
13 124 £ 80-
14 136 = 60
15 124 % r
16 132 LTI
17 112
18 128 20|
19 120 ) T T T Y Y Y Y Y O |
20 116 012 3 456 738 9 10111213141516 17 18 19 20 21 22 23 24
21 136 Week
22 132

(c¢) (Figure 17.2) Note the increased level of the time series beginning in week
13. This change in the level of the time series makes it more  difficult  to

choose an appropriate forecasting method.

8. Selecting a forecasting method that adapts well to  changes in the level ~ of a

time series is an important consideration in many practical applications.
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Trend Pattern

1. Although time series data generally exhibit random fluctuations, a time series may

also show gradual shifts or movements  to relatively higher or lower values over

a  longer  period of time.

2. If a time series plot exhibits this type of behavior, we say that a  trend pattern

exists.

3. A trend is usually the result of  long-term factors  such as population increases

or decreases, changing demographic characteristics of the population, technology,

and/or consumer preferences.

4. (Table 17.3) (Figure 17.3) Consider the time series of bicycle sales for a
particular manufacturer over the past 10 years.

FIGURE 17.3 | Bicycle Sales Time Series Plot

34

TABLE 17.3
Eoll8
Bicycle Sales Time Series
30k
Year Sales (1000s) =
s 23}
1 216 g
2 229 3 2}
3 255 i
4 21.9 24|
5 239
6 27.5 2r
7 315
8 29.7 200123456789101111
9 28.6 Year
10 314 —

Visual inspection of the time series plot shows some up and down movement over the

past 10 years, but the time series also seems to have a  systematically increasing

or upward trend . The trend for the bicycle sales time series appears to be

linear  and increasing over time.

5. (Table 17.4) (Figure 17.4) The data show the sales for a cholesterol drug
since the company won FDA approval for it 10 years ago.
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FIGURE 17.4 Cholesterol Revenue Times Series Plot ($Millions)

TABLE 17.4 120

Cholesterol Revenue e

Time Series ($Millions) i

Year Revenue el

1 23.1 : ol

2 21.3 Z

3 27.4 wl

4 34.6

5 338 ol

[ 43.2

7 59.5 1 1 1 1 1 1 I 1 1 )
8 64.4 0012345678910
g 74.2 Year

10 T

The time series increases in a nonlinear fashion; that is, the  rate of change  of

revenue does not increase by a constant amount from one year to the next. In fact,

the revenue appears to be growing in an  exponential ~ fashion.

6. Exponential relationships such as this are appropriate when the percentage change

from one period to the next is relatively  constant .

Seasonal Pattern

1. The trend of a time series can be identified by analyzing multiyear movements in

historical data . Seasonal patterns are recognized by seeing the  same repeating patterns

over successive periods of time.

2. For example, a manufacturer of swimming pools expects low sales activity
in the fall and winter months, with peak sales in the spring and summer months.

Manufacturers of snow removal equipment and heavy clothing, however, expect just

the opposite yearly pattern.

3. The pattern for a time series plot that exhibits a repeating pattern over a one-year

period due to seasonal influences is called a  seasonal  pattern.

4. Daily traffic volume shows within-the-day “seasonal” behavior, with peak
levels occurring during rush hours, moderate flow during the rest of the day and

early evening, and light flow from midnight to early morning.
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5. (Table 17.5) (Figure 17.5) As an example of a seasonal pattern, consider
the number of umbrellas sold at a clothing store over the past five years.

TABLE 17.5 Umbrella Sales Time Series

Year Quarter Sales
1 1 125
2 153
& 106
4 a8
2 1 118
2 161
3 133
4 102
& 1 138
2 144
3 113
4 80
4 1 109
2 137
3 125
4 109
5 1 130
2 165
&l 128
4 96

FIGURE 17.5 ' Umbrella Sales Time Series Plot

180
160 |-
140 |-

120

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 J
123 412 3 412 3 41 2 3 41 2 3 4
Year 1 Year 2 Year 3 Year 4 Year 5

Year/Quarter

The time series plot does not indicate any  long-term trend in sales. The

data follow a  horizontal pattern. But closer inspection of the time series

plot reveals a  regular pattern  in the data. That is, the first and third quar-

ters have moderate sales, the second quarter has the highest sales, and the fourth
quarter tends to have the lowest sales volume. Thus, we would conclude that a

quarterly seasonal  pattern is present.
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Trend and Seasonal Pattern

1. Some time series include a combination of a trend and seasonal pattern.

2. (Table 17.6) (Figure 17.6) The smartphone sales for a particular manu-
facturer over the past four years.

TABLE 17.6 Quarterly Smartphone Sales Time Series

Year Quarter Sales (1000s)

1 4.8
4.1
6.0
6.5
5.8
B2
6.8
7.4
6.0
5.6
7.5
7.8
6.3
515
8.0
8.4

BN = BN = RN = BN =

|
FIGURE 17.6 Quarterly Smartphone Sales Time Series Plot
9.0 -

8.0
7.0 F
6.0 F
50F
40+
3.0 F

20

Quarterly Smartphone (1000s)

1 1 1 1

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
1 Year 2 Year 3

Year/Quarter

3. Clearly, an increasing trend is present.
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4. But, Figure 17.6 also indicates that sales are lowest in the second quarter of each
year and increase in quarters 3 and 4. Thus, we conclude that a seasonal pattern

also exists for smartphone sales.

5. In such cases we need to use a forecasting method that has the capability to deal

with both  trend and seasonality

Cyclical Pattern

1. A cyclical  pattern exists if the time series plot shows an alternating sequence

of points below and above the trend line  lasting more than one year.

2. Often, the cyclical component of a time series is due to  multiyear business cycles

3. For example, periods of moderate inflation followed by periods of rapid
inflation can lead to time series that alternate below and above a generally

increasing trend line (e.g., a time series for housing costs).

4. A cyclical pattern repeats with some  regularity over several years . Cyclical

patterns differ from seasonal patterns in that cyclical patterns occur over multiple

years, whereas seasonal patterns occur  within one year

d. [More Example] https://robjhyndman.com/hyndsight/cyclicts/

(a) The plot shows the famous Canadian lynx (LLU%#) data —the number of lynx
trapped each year in the McKenzie (22 85#) river district of northwest Canada
(1821-1934). These show clear aperiodic (FF#BER M4 RY) population cycles of
approximately 10 years. The cycles are not of fixed length —some last 8 or 9

years and others last longer than 10 years.

@
=3
S
S

4000 -

Number of lynx trapped
S
8

1820 1840 1860 1880 1900 1920
Year
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(b) The plot shows the monthly sales of new one-family houses sold in the USA
(1973-1995). There is strong seasonality within each year, as well as some

strong cyclic behaviour with period about 6 —10 years.

Monthly housing sales (millions)

(¢) The plot shows half-hourly electricity demand in England and Wales from
Monday 5 June 2000 to Sunday 27 August 2000. Here there are two types of
seasonality —a  daily =~ pattern and a  weekly  pattern. If we collected
data over a few years, we would also see there is an  annual  pattern. If

we collected data over a few decades, we may even see a longer cyclic pattern.

G
w
@
=3
S
)

Electricity demand (GW)

6. Business cycles are extremely difficult, if not impossible, to forecast. As a result,
cyclical effects are often combined with long-term trend effects and referred to as

trend-cycle effects

Selecting a Forecasting Method

1. The underlying pattern in the time series is an important factor in selecting a

forecasting method. Thus, a  time series plot ~ should be one of the first things

developed when trying to determine which forecasting method to use.
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2. The next two sections illustrate methods that can be used in situations where the
underlying pattern is horizontal; in other words, no trend or seasonal effects are
present. We then consider methods appropriate when trend and/or seasonality are

present in the data.

17.2 Forecast Accuracy

1. The simplest of all the forecasting methods (a  naive forecasting method ): an

approach that uses the most recent  week’s sales volume as the forecast for the

next week.

2. (Table 17.7) The distributor sold 68 thousand gallons of gasoline in week 1; this
value is used as the forecast for week 2. Next, we use 84, the actual value of sales

in week 2, as the forecast for week 3, and so on.

TABLE 17.7 Computing Forecasts and Measures of Forecast Accuracy Using the Most
Recent Value as the Forecast for the Next Period

Time Absolute Value Squared Absolute Value

Series Forecast  of Forecast Forecast Percentage of Percentage
Week Value Forecast Error Error Error Error Error

1 68

2 84 68 16 16 256 19.05 19.05
3 76 84 -8 8 64 1053 10.53
4 92 76 16 16 256 730 1739
5 72 92 -20 20 400 =7 20078
6 64 72 -8 8 64 =250 12.50
i 80 64 16 16 256 20.00 20.00
8 72 80 =& 8 64 =111 11.11
9 88 72 16 16 256 18.18 18.18
10 80 88 -8 8 64 —10.00 10.00
11 60 80 —20 20 400 =R 3388
12 88 60 28 28 784 5187 2182
Totals 20 164 2864 15 211.69

3. The key concept associated with measuring forecast accuracy is  forecast error
defined as

Forecast Error = ActualValue — Forecast
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(a) Because the distributor actually sold 84 thousand gallons of gasoline
in week 2 and the forecast, using the sales volume in week 1, was 68 thousand

gallons, the forecast error in week 2 is

Forecast Error in week 2 = 84 — 68 = 16

(b) The fact that the forecast error is positive indicates that in week 2 the forecast-

ing method  underestimated  the actual value of sales. Next, we use 84,

the actual value of sales in week 2, as the forecast for week 3. Since the actual
value of sales in week 3 is 76, the forecast error for week 3 is 76—84 = —8.
In this case, the negative forecast error indicates that in week 3 the forecast

overestimated the actual value.

(c) A simple measure of forecast accuracy is the mean or average of the forecast errors

Table 17.7 shows that the sum of the forecast errors for the gasoline sales time

series is 20; thus, the mean or average forecast error is  20/11 = 1.82

(d) Because positive and negative forecast errors tend to _ offset  one another,
the mean error is likely to be small; thus, the mean error is not a very useful

measure of forecast accuracy.

4. The mean absolute error , denoted  MAFE , is the average of the absolute

values of the forecast errors.

(a) MAE is a measure of forecast accuracy that avoids the problem of positive and

negative forecast errors offsetting one another.

(b) (Table 17.7) the sum of the absolute values of the forecast errors is 164:

MAE = average of the absolute value of forecast errors =  164/11=14.91

5. Another measure that avoids the problem of positive and negative forecast errors
offsetting each other is obtained by computing the average of the  squared

forecast errors ( mean squared error IS denoted MSE )

MSE = average of the sum of squared forecast errors = 2864 /11=260.36

6. The size of MAE and MSE depends upon the scale of the data . As a result,

it is difficult to make comparisons for different time intervals, such as comparing
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10.

11.

a method of forecasting monthly gasoline sales to a method of forecasting weekly

sales, or to make comparisons across different time series.

The mean absolute percentage error , denoted  MAPE , is a percentage er-

ror corresponding to the  forecast  of 84 in week 2 is computed by dividing the

forecast error  in week 2 by the actual value  in week 2 and multiplying

the result by 100 .

(a) For week 2 the percentage error is computed as follows:

Percentage error for week 2 = forecast error - _ 16/84 x (100) = 19.05%

actual value

Thus, the forecast error for week 2 is 19.05% of the observed value in week 2.

(b) The sum of the absolute values of the percentage errors is 211.69:

MAPE = average of the absolute value of percentage forecast errors

= 211.69/11 = 19.24%

Summarizing, using the naive (most recent observation) forecasting method, we

obtained the following measures of forecast accuracy:

MAE = 3.73, MSE = 16.27, MAPE = 19.24%

These measures of forecast accuracy simply measure how well the forecasting method

is able to  forecast historical values  of the time series.

Suppose we want to forecast sales for a  future time period , such as week 13.

In this case the forecast for week 13 is 88, the actual value of the time series
in week 12. Is this an accurate estimate of sales for week 137 Unfortunately,

there is no way to address the issue of accuracy  associated with forecasts for

future time periods . But, if we select a forecasting method that works well for

the historical data, and we think that the historical pattern will continue into the

future, we should obtain results that will ultimately be shown to be good.

(Table 17.8) Suppose we use the average of all the historical data available as

the forecast for the next period. We begin by developing a forecast for week 2. Since

there is only one historical value available prior to week 2, the forecast for week 2
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is just the time series value in week 1; thus, the forecast for week 2 is 84 thousand
gallons of gasoline. To compute the forecast for week 3, we take the average of the

sales values in weeks 1 and 2. Thus,

Forecast for week 3 = (68 +84)/2 = 76

TABLE 17.8 Computing Forecasts and Measures of Forecast Accuracy Using the Average
of All the Historical Data as the Forecast for the Next Period

Time Absolute Value Squared Absolute Value

Series Forecast  of Forecast Forecast Percentage of Percentage
Week Value Forecast Error Error Error Error Error

1 68

2 84 68.00 16.00 16.00 256.00 19.05 19.05
%) 76 76.00 .00 .00 .00 .00 .00
4 97 76.00 16.00 16.00 256.00 1739 185
5 72 80.00 —8.00 8.00 64.00 =51 ISR
6 64 78.40 —14.40 14.40 207.36 =22.50) 22.50
7 80 76.00 4.00 4.00 16.00 5.00 5.00
8 72 55T —4.57 4.57 20.90 =635 585
9 88 76.00 12.00 12.00 144.00 13.64 13.64
10 80 TS 2167 2.67 711 3188 53
11 60 77.60 =70 17.60 309.76 =LA 298
12 88 76.00 12.00 12.00 144.00 13.64 13.64
Totals 18.10 107.24 1425.13 ELTIS 141.34

12. Comparing the values of MAE, MSE, and MAPE for each method:

Naive Method | Average of Past Values
MAE 14.91 9.75
MSE 260.36 129.56
MAPE 19.24% 12.85%

13. For every measure, the average of past values provides more accurate  forecasts

than using the most recent observation as the forecast for the next period.

14. In general, if the underlying time series is  stationary , the average of all the

historical data will always provide the best results.

(a) (Recall Table 17.2) But suppose that the underlying time series is not station-

ary. Note the change in level in week 13 for the resulting time series.

When a shift to a new level like this occurs, it takes a long time for the fore-
casting method that uses the average of all the historical data to adjust to the

new level of the time series.
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(b) In this case, the simple naive method adjusts very rapidly to the change in

level because it uses the most recent observation available as the forecast.

(c) Measures of forecast accuracy are important factors in comparing different
forecasting methods, but we have to be careful not to rely upon them too

heavily.

(d) Good judgment and knowledge about business conditions that might affect the
forecast also have to be carefully considered when selecting a method. And

historical forecast accuracy  is not the only consideration, especially if the

time series is likely to change in the future.

17.3 Moving Averages and Exponential Smoothing

1. Three forecasting methods that are appropriate for a time series with a horizontal

pattern:  moving  averages, weighted  movingaverages, and exponential

smoothing.

2. The objective of each of these methods is to smooth out the random fluctuations

in the time series, they are referred to as  smoothing  methods.

3. These methods are easy to use and generally provide a high level of  accuracy

for short-range  forecasts , such as a forecast for the next time period.

Moving Averages

1. (Moving Average Forecast of Order k) The moving averages method uses the
average of the most recent k data values in the time series as the forecast for the

next period:
t t k data val e .
F. = >~ (mos recenk ata values) _ Y4V + . + Yiob-1) (17.1)

where Fi,; is the forecast of the times series for period ¢ + 1 and Y; is the actual

value of the time series in period ¢.
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2. The average will change, or move, as new observations become available.

(a)

To use moving averages to forecast a time series, we must first select the
order , or number of time series values, to be included in the moving

average.

If only the  most recent  values of the time series are considered relevant,

a small value of k is preferred.

If more past  values are considered relevant, then a larger value of £ is
better.

A time series with a horizontal pattern can shift to a new level over time. A
moving average will adapt to the new level of the series and resume providing

good forecasts in k£ periods.

Thus, a smaller value of k£ will  track shifts  in a time series more quickly.

But larger values of k will be more effective in ~ smoothing out ~ the random

fluctuations over time.

3. (Recall Table 17.1 and Figure 17.1) the gasoline sales data

(a)

The time series plot in Figure 17.1 indicates that the gasoline sales time series

has a  horizontal pattern . Thus, the smoothing methods of this section

are applicable.

Use a three-week moving average (k = 3), the forecast of sales in week 4 using

the average of the time series values in weeks 1—3:

69 + 84+ 76

76
3

F, = average of weeks 1-3 =

Thus, the moving average forecast of sales in week 4 is 76 or 76,000 liters of

gasoline.

The actual value observed in week 4 is 92, the  forecast error  in week 4 is
92 — 76 = 16.

(Table 17.9) The forecast of sales in week 5 by averaging the time series values

in weeks 2-4.

844 76+92

84
3

F5 = average of weeks 24 =
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Hence, the forecast of sales in week 5 is 84 and the error associated with this
forecast is 72 — 84 = —12.

TABLE 17.9 Summary of Three-Week Moving Average Calculations

Time Absolute Value Squared Absolute Value
Series Forecast of Forecast Forecast Percentage of Percentage
Week Value  Forecast Error Error Error Error Error
1 68
2 84
3 76
4 92 76 16 16 256 (17580 17.39
5 72 84 =iz 12 144 —-16.67 16.67
b6 64 80 —16 16 256 —25.00 25.00
v 80 76 4 4 16 5.00 5.00
8 72 72 0 0 0 .00 .00
3 88 72 16 16 256 18.18 18.18
10 80 80 0 0 0 .00 .00
1 60 80 -20 20 400 =328 g883)
12 88 76 12 12 144 13.64 13.64
Totals 0 96 1472 —20.79 129.21

(e) (Figure 17.7) Note how the graph of the moving average forecasts has tended

to  smooth out the random fluctuations in the time series.

FIGURE 17.7 Gasoline Sales Time Series Plot and Three-Week Moving
Average Forecasts

100 -
80 |
E
p=t
S 60
2 Three-week moving
= average forecasts
Z 40
%
=
@
20F
0 1 1 1 1 1 1 1 1 1 1 1 ]
0 1 2 3 AR 5 A G g8 9 10 11 12

(f) To forecast sales in week 13, the next time period in the future, we simply

compute the average of the time series values in weeks 10, 11, and 12.
80 +60 + 88
2 -

(g) Forecast Accuracy Using the three-week moving average calculations in Ta-

F13 = average of weeks 10-12 = 76

ble 17.9, the values for these three measures of forecast accuracy (MAE, MSE,
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and MAPE) are

96
MAE = 9= 10.67 (mean absolute error)
1472
MSE = 5 = 163.56 (mean squared error)
129.21
MAPE = 0 = 14.36% (mean absolute percentage error)

(h) (Recall Section 17.2) Using the most recent observation as the forecast for the
next week (a moving average of order k = 1) resulted in values of MAE = 14.91,

MSE = 260.36, and MAPE = 19.24%. Thus, in each case the three-week

moving average approach provided  more accurate  forecasts than simply

using the most recent observation as the forecast.

4. To determine if a moving average with a different order k can provide more accurate

forecasts, we recommend using  trial and error  to determine the value of £ that

minimizes MSE.

5. For the gasoline sales time series, it can be shown that the minimum value of MSE

corresponds to a moving average of order kL = 6 with MSE = 6.79 . If we are

willing to assume that the order of the moving average that is best for the historical
data will also be best for future values of the time series, the most accurate moving
average forecasts of gasoline sales can be obtained using a moving average of order
k = 6.

Weighted Moving Averages

1. In the moving averages method, each observation in the moving average calculation

receives the  same weight

2. One variation, known as weighted moving averages, involves selecting a  different weight

for each data value and then computing a weighted average of the most recent &

values as the forecast.

3. In most cases, the  most recent  observation receives the — most weight , and

the weight decreases for older data values.
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4. A moving average forecast of order £k = 3 is just a special case of the weighted
moving averages method in which each weight is equal to 1/3. Note that for the

weighted moving average method the sum of the weights is equal to 1

D. We assign a weight of 3/6  to the most recent observation, a weight
of 2/6  to the second most recent observation, and a weight of 1/6  to the

third most recent observation. Using this weighted average, our forecast for week 4

Is:
1 2 3
Forecast for week 4 = 6(68) + 6(84) + 6(76) =177.33

6. To use the weighted moving averages method, we must first select the number of
data values to be included in the weighted moving average and then choose weights

for each of the data values. In general, if we believe that the  recent past is

a better predictor of the future than the distant past, larger weights should

be given to the more recent observations. However, when the time series is highly
variable, selecting approximately  equal weights for the data values may be

best.

7. Forecast Accuracy To determine whether one particular combination of number of
data values and weights provides a more accurate forecast than another combination,
we recommend using  MSE as the measure of forecast accuracy. That is, if we
assume that the combination that is best for the past  will also be best for the

future , we would use the combination of number of data values and weights
that minimizes MSE for the historical time series to forecast the next value in the

time series.

Exponential Smoothing

1. Exponential smoothing also uses a weighted average of past time series values as a
forecast; it is a special case of the weighted moving averages method in which we

select  only one weight ——the weight for the  most recent  observation.

2. The weights for the other data values are computed automatically and become

smaller as the observations move farther into the past.
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3. Exponential Smoothing Forecast

Fioi= oY, +(1—-a)F (17.2)

where

F,11: forecast of the time series for period (¢ + 1)
Y;: actual value of the time series in period ¢
F}: forecast of the time series for period ¢

a:  smoothing constant (0 < a <1)

4. Equation (17.2) shows that the forecast for period ¢+ 1 is a weighted average of the

actual value in period ¢ and the forecast for period t.

5. The weight given to the actual value in period ¢ is the smoothing constant o

and the weight given to the forecast in period tis 1 —a .

6. Let us illustrate by working with a time series involving only three periods of data:
Y1, Ys, and V3.

(a) To initiate the calculations, we let F} equal the actual value of the time series

in period 1; that is, F; = Y;7. Hence, the forecast for period 2 is

F= oVi+(1—-a)FF, = oaVi+(1—-a)V1=Y;

We see that the exponential smoothing forecast for period 2 is equal to the

actual value of the time series in period 1

(b) The forecast for period 3 is

F3= a4+ (1—-a)F,=aYs+ (1 —a)V;

(c) Finally, substituting this expression for F3 in the expression for F4, we obtain
F4 = OéYg + (1 - Oé)Fg

= aYs+ (1 —a)aYs+ (1 — )]
= aYs +a(l —a)Ys + (1 —a)’Y;

(112—2) %}EE‘*’% (:) February 19, 2024



Chapter 17 Time Series Analysis and Forecasting Page 20/35

(d) We now see that Fj is a weighted average of the first three time series values.

The sum of the coefficients, or weights, for Y;, Y5, and Y3 equals 1.

(e) A similar argument can be made to show that, in general, any forecast Fj,; is

a weighted average of all the previous time series values.

2 QUESLION ..o (p876)

Use exponential smoothing approach with a smoothing parameter o = 0.2 to obtain
Fy, F3, Fy and Fi3 for the gasoline sales time series in Table 17.1 and Figure 17.1.
Start the calculations, set the exponential smoothing forecast for period 2 equal to

the actual value of the time series in period 1.

sol:
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TABLE 17.10 Summary of the Exponential Smoothing Forecasts and Forecast Errors for the Gasoline

Sales Time Series with Smoothing Constant a = .2

Week

0 ~NO~ W=

= e
N = O 0

Time Series Value

68
84
76
92
72
64
80
72
88
80
&0
88

Forecast

68.00
71.20
72.16
7613
75.30
73.04
74.43
73.95
7676
77.41
7392

Totals

Forecast

Error

16.00
4.80
19.84
—4.13
= 1130
6.96
—2.43
14.05
3.24
—17.41
14.08

43.70

Squared
Forecast Error

256.00
23.04
393.63
17.06
127.69
48.44
5.90
197.40
10.50
303.11
198.25

1581.02

(112-2) %zt

FIGURE 17.8 Actual and Forecast Gasoline Sales Time Series with

Sales (1000s of liters)
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TABLE 17.11 Summary of the Exponential Smoothing Forecasts and Forecast Errors for the Gasoline

Sales Time Series with Smoothing Constant a = .3

Forecast Squared
Week Time Series Value Forecast Error Forecast Error
1 68
2 84 68.00 16.00 256.00
3 76 72.80 3.20 10.24
4 92 73.76 18.24 332.70
5 72 79.23 —7.23 52.27
6 &4 77.06 —13.06 170.56
7 80 73.14 6.86 47.06
8 72 75.20 —3.20 10.24
9 88 74.24 13.76 189.34
10 80 78.37 1.63 2.66
n 60 78.86 —18.86 355.70
12 88 73.20 14.80 219.04
Totals 32.14 1645.81

1. Forecast Accuracy (Table 17.10)(Figure 17.8)(Table 17.11) The criterion we will
use to determine a desirable value for the smoothing constant a is the same as the
criterion we proposed for determining the order or number of periods of data to
include in the moving averages calculation. That is, we choose the value of a that

minimizes the MSE

2. The exponential smoothing results with o = 0.2: the value of the sum of squared

forecast errors is 98.80; hence A SE =98.80/11 =898 . The exponential

smoothing results with v = 0.3: the value of the sum of squared forecast errors

is 102.83; hence  MSE = 102.83/11 = 9.35

3. Thus, we would be inclined to prefer the original smoothing constant of @ = 0.2.

Using a  trial-and-error  calculation with other values of a;, we can find a ”"good

value for the smoothing constant.

17.4 'Trend Projection

1. We present two forecasting methods in this section that are appropriate for time

series exhibiting a  trend pattern
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(a) First, we show how

simple linear regression

can be used to forecast a time

series with a linear trend.

(b) Next we show how the

also be used to forecast time series with a

trend.

curve-fitting

capability of regression analysis can

Linear Trend Regression

curvilinear or nonlinear

1. (Table 17.12) (Figure 17.9) the bicycle sales time series: the linear trend line provides

a reasonable approximation of the long-run movement in the series.

FIGURE 17.9 | Bicycle Sales Time Series Plot

34

33k
TABLE 17.12 =L
Bicycle Sales Time Series ;(1) i
Year Sales (1000s) 2 o[
1 21.6 S a7f
2 229 2 26t
3 255 N5k
4 21.9 241
5 239 23
b 27.5 221
7 31.5 A
20 1 1 1 1 1 1 1 1 1 1 1 ]
8 29.7 0 1 2 3 4 5 6 7 8 9 10 11 12
9 28.6 Year
10 34 |

2. The estimated regression equation describing a  straight-line  relationship be-

tween an independent variable x and a dependent variable y is written as

/g:b()—i‘bll'

where 7 is the estimated or predicted value of y.

3. To emphasize the fact that in forecasting the independent variable is time, we

will replace  »  with ¢+ and ¢  with 7,  to emphasize that we are
estimating the trend for a time series.
4. Linear Trend Equation
T, = by + byt (17.4)

where
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T; = linear trend forecast in period ¢
by = intercept of the linear trend line

b1 = slope of the linear trend line

t = time period, t = 1 (¢t = n) corresponding to the first time (most recent)

series observation

FIGURE 17.10 Trend Represented by a Linear Function for the Bicycle Sales

Time Series

Sales (1000s)

34
58
32
31
30
29
28
27
26
25
24
23
22
21
20

0

5. Computing the Slope and Intercept for a Linear Trend

where

Yt =D —Y)

b pr—
1 S (t—1)
ST tY, — ntY
= L7t T 17.5
> 12 — nt? (17.5)

Y, = value of the time series in period ¢

n = number of time periods (number of observations)

Y = average value of the time series

t = average value of ¢

6. the bicycle sales time series

(112-2) #stE (D)
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TABLE 17.13 Summary of Linear Trend Calculations for the Bicycle Sales Time Series

t Y, t—t
1 21.6 -4.5
2 229 -3.5
3 25.5 -2.5
4 219 -1.5
5 23.9 -5
6 27.5 5
7 315 1.5
8 29.7 25
9 28.6 3.5
10 314 4.5
Totals 5 264.5

Y-V
—4.85
355!

=55
—4.55
—2.55
1.05
5.05
3.25
Z815!
4.95

-1y, -V

21.825
12.425
2375
6.825
1.275
.525
7.575
8.125
7.525
22.275

90.750

(t—1)7?
20.25
12.25

6.25
2.25
.25
25|
2.25
6.25
12.25
20.25

82.50

(a) The linear trend equation is

T, =

204 +1.1¢

(b) The slope of 1.1 indicates that over the past 10 years the firm experienced an

average growth in sales

of about

1100 units

per year.

(c) If we assume that the past 10-year trend in sales is a good indicator of the

future, this trend equation can be used to develop forecasts for future time

periods. For example, the next year’s trend projection or forecast, T1;.

Tll =

204+ 1.1(11) = 32.5

Thus, using trend projection, we would forecast sales of 32,500 bicycles next

year.

7. (Table 17.14) Use MSE to compute the accuracy associated with the trend projection

forecasting method.

TABLE 17.14 Summary of the Linear Trend Forecasts and Forecast Errors for the Bicycle

Sales Time Series

Year Sales (1000s) Y,

1 21.6
229
255
2R
23.9
2785
SilES
255
286
31.4

O 0o~~~ wN

(112-2) #stE (D)

Forecast T,

21.5
22.6
23.7
24.8
25.9
27.0
28.1
29.2
30.3
31.4

Forecast Error

al

£
114
=747)
210
5
3.4
5|
=17
dv)

Total

Squared
Forecast Error
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8. Because

linear trend regression

S (Yi—F)” 307

MSE =

n

10

= 3.07

in forecasting is the same as the standard re-

gression analysis procedure applied to time-series data, we can use statistical soft-

ware to perform the calculations.

9. (Figure 17.11) the value of MSE in the ANOVA table is

(112-2) %zt

MSE =

20

Sum of Squares Due to Error

Degrees of Freedom

Regression Analysis: Sales Versus Year

Analysis of Variance
Source DF Adj S8 Adj MS
Regression 1 99.82 99.825
Error 8 30.70 3.837
Total 9 130.52
Model Summary

S R-sq
1.95895 76.48%
Coefficients
Term Coef SE Coef T-Value
Constant 2040 1.34 15.24
Year 1.10 216 5.10

Regression Equation

Sales = 20.40 + 1.100 Year

F-Value
26.01

P-Value
.000
.001

30.7
8

= 3.837

P-Value
.001

FIGURE 17.11 Regression Output for the Bicycle Sales Time Series
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FIGURE 17.12 Time Series Linear Trend Analysis Output for the Bicycle Sales Time Series

w
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1

WVariable
—ae— Sales
Linear (Sales)

w
(=]
T

Accuracy Measures
MAPE 5.06814
MAD  1.32000
MSE  3.07000

[
[=2]
T

y=1l1x + 204
R’ = 7648

Sales (1000s)
e} =)
s &
T T

(]
(]
T

(=]
(=]
T

10. This value of MSE  differs  from the value of MSE that we computed previously

11.

because the sum of squared errors is divided by 8  instead of 10 ; thus,

MSE in the regression output is not the  average of the squared forecast errors

NOTE: Most forecasting packages, however, compute MSE by taking the average
of the squared errors. Thus, when using time series packages to develop a trend
equation, the value of MSE that is reported may differ slightly from the value you

would obtain using a general regression approach.

Nonlinear Trend Regression

1.

(Table 17.15) (Figure 17.13) Consider the annual revenue in millions of

dollars for a cholesterol drug for the first 10 years of sales.

TABLE 17.15 FIGURE 17.13 Cholesterol Revenue Times Series Plot ($Millions)

Cholesterol Revenue 120
Time Series ($ Millions)

100

Year Revenue
(1) (% millions) gl
231
21.3
27.4
34.6
338
43.2 2
59.5
64.4 % 1 2 3 4 5 6 7 § 9 10
74.2 Year

99.3

60 -

Revenue

40

O 0~ 0wk =

—
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2. The time series plot indicates an  overall increasing ~ or  upward  trend. A

curvilinear function appears to be needed to model the long-term trend.

3. Quadratic Trend Equation A variety of nonlinear functions can be used to de-
velop an estimate of the trend for the cholesterol time series. For instance, consider

the following quadratic trend equation:

T, = by + byt + bot? (17.7)

4. (Figure 17.14) a portion of the multiple regression output for the quadratic trend

FIGURE 17.14 Quadratic Trend Regression Output for the Cholesterol Revenue
Time Series

Regression Analysis: Revenue Versus Year, YearSq

model;

Analysis of Variance

Source DF Adj SS AdjMS  F-Value P-Value
Regression 2 S0 I15) 2885.06 182.52 .000
Error 7 110.65 15.81
Total 9 5880.78
Model Summary
S R-sq
3.97578 98.12%
Coefficients
Term Coef SECoef  T-Value P-Value
Constant 24.18 4.68 S0 .001
Year =21l 1.95 —1.08 e
YearSq 922 A7) 5.2 .001
Regression Equation

Revenue = 24.18 — 2.11 Year + .922 YearSq

The estimated regression equation is

Revenue ($millions) = 24.18 — 2.11Year + 0.922YearSq

5. Exponential Trend Equation

T, = boe™! (17.8)

6. Suppose by = 16.71, and b, = 0.1697, T; is not increasing by a constant amount as

in the case of the linear trend model but by a  constant percentage
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7. In this exponential trend model, multiplicative factor is 016970 — 1 185 | so

the constant percentage increase from time period to time period is  18.5% .

8. Many statistical software packages have the capability to compute an exponential

trend equation directly. Some software packages only provide linear trend, but by
applying a natural log transformation to both sides of the equality in equation (17.8)

we can apply the equivalent linear form:

InT; = Inby + byt

(Figure 17.15)

FIGURE 17.15 Time Series Exponential Growth Trend Analysis Output for the Cholesterol
Sales Time Series

U= Variable
——a&— Revenue
100F Expon. (Revenue)
80
g
g or
]
-4
40 57 = G e
R’ = 0688
20
(1) 3 1 1 1 1 I 1
0 2 4 6 8 10 12
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17.5 Seasonality and Trend

Seasonality Without Trend

1. (Table 17.16)(Figure 17.16) Consider the number of umbrellas sold at a

clothing store over the past five years.

FIGURE 17.16 | Umbrella Sales Time Series Plot

180

TABLE 17.16

Umbrella Sales Time

Series 160 -

Year Quarter Sales

1 125 e8]

1
2 153
3 106 20
4 88
2 1 118 %'00'
2 161 3
3 133 80 -
4 102
3 1 138 60 -
2 144
3 113 40 -
4 80
4 1 109 20
2 137
3 125 1 1 1 1 1 Il 1 1 1 1 1 | 1 1 1 1 1 Il 1 1
4 109 O™ %2 3 4 1 2 3 4 1 23 41 23 412 3 4
5 1 130 Year 1 Year 2 Year 3 Year 4 Year 5
2 165 Year/Quarter
3 128
4

.

2. The time series plot does not indicate any  long-term  trend in sales. The first

and third quarters have moderate sales, the second quarter has the highest sales,
and the fourth quarter tends to be the lowest quarter in terms of sales volume.

Thus, we would conclude that a  quarterly seasonal = pattern is present.

3. Just like using  dummy variables to deal with an independent variable in a

standard regression analysis, we can use the same approach to model a time series

with a seasonal pattern by treating the season as a  categorical variable

4. Recall that when a categorical variable has k levels, Lt—1  dummy variables are

required. Thus, to model the gseasonal effects  in the umbrella time series we

need 4—1 = 3 dummy variables:

Qtrl — { 1 if Quarter 1 Qtr2 = { 1 if Quarter 2 Qtr3 = { 1 if Quarter 3

0 otherwise 0 otherwise 0 otherwise

5. Using Y to denote the estimated or forecasted value of sales, the general form of the

estimated regression equation relating the number of umbrellas sold to the quarter
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the sales take place:

~

Y = bo + lez‘rl + b2Qt7"2 + bj@f?“?)

6. (Table 17.17) the umbrella sales time series with the coded values of the dummy

variables.

TABLE 17.17 Umbrella Sales Time Series with Dummy Variables

Year Quarter Qtr1 Qtr2 Qtr3 Sales
1 1 1 0 0 125
2 (o] 1 0 153
3 0 0 1 106
4 0 0 0 88
24 1 1 0 0 118
2 (o] 1 0 161
3 (4] 0 1 133
4 4] 0 0 102
3 1 1 0 0 138
2 (0] 1 0 144
3 (4] 0 1 113
4 (0] 0 0 80
4 1 1 0 0 109
2 (4] 1 0 137
3 0 0 1 125
4 0 0 0 109
5! 1 1 0 0 130
2 (] 1 0 165
3 (0] 0 1 128
4 0 0 0 96

7. (Figure 17.17) the computer output: the estimated multiple regression equation

obtained is
Sales = 95.00 + 29.00 Qtrl + 57.00 Qtr2 + 26.00 Qtr3

We can use this equation to forecast quarterly sales for next year.

Quarter 1: Sales = 95.0 +29.0(1) + 57.0(0) + 26.0(0)
Quarter 2: Sales = 95.0 +29.0(0) 4+ 57.0(1) + 26.0(0)
Quarter 3: Sales = 95.0 +29.0(0) 4+ 57.0(0) + 26.0(1)

(0) (1) (0)

124.
152.
121.
95.

Quarter 4: Sales = 95.0 +29.0(0) + 57.0(1) + 26.0(0

FIGURE 17.17 Regression Output for the Umbrella Sales Time Series

Term Coef  SE Coef T-Value P-Value
Constant ~ 95.00 5.06 18.76 000
Qtrl 29.00 7.16 4.05 001
Qtr2 57.00 7.16 7.96 000
Qtr3 26.00 7.16 3.63 002

Regression Equation
Sales = 95.00 + 29.00 Qtrl + 57.00 Qtr2 + 26.00 Qu3
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8. The regression output shown in Figure 17.17 provides additional information that

can be used to assess the accuracy  of the forecast and determine the  significance

of the results.

Seasonality and Trend
1. (Table 17.18) (Figure 17.18) The quarterly smartphone sales.

FIGURE 17.18 | Smartphone Sales Time Series Plot

9.0
TABLE 17.18

Smartphone Sales Time
Series

8.0

701
Sales

Year Quarter (1000s)
1 48

Quarterly Smartphone (1000s)

8.0

B

1
2 4.1
3 6.0 50F
4 6.5
2 1 58
2 52 GO|F
3 6.8
4 74 30
3 1 6.0
2 5.6
3 75 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 78 1 2 3 412 3 412 3 41 2 3 4
4 1 6.3 Year 1 Year 2 Year 3 Year 4
2 5.9 Year/Quarter
4

2. The sales are lowest in the second quarter of each year and increase in quarters 3

and 4. Thus, we conclude that a  seasonal pattern  exists for smartphone sales.

3. But the time series also has an  upward linear trend  that will need to be ac-

counted for in order to develop accurate forecasts of quarterly sales.

4. This is easily handled by combining the =~ dummy variable approach ~ for season-

ality with the time series  regression approach  for hand-ling linear trend.

5. The general form of the estimated multiple regression equation for modeling both

the quarterly seasonal effects and the linear trend in the smartphone time series:

Y, = by + by Qtrl + by Qtr2 + by Qtr3 + byt

where

Y, = estimate or forecast of sales in time period t
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Qtrl = 1 (Qtr2 = 1)(Qtr3 = 1) if time period t corresponds to the first
(second) (third) quarter of the year; 0 otherwise.

6. (Table 17.19) revised smartphone sales time series that includes the coded values of

the dummy variables and the time period t.

TABLE 17.19 Smartphone Sales Time Series with Dummy Variables and Time Period

Year
1

Quarter

BWN = BWN =B WNN = B W

Qtr1 Qtr2 Qtr3 Period Sales (1000s)
1 0 0 i 4.8
0 l 0 2 41
0 0 1 3 6.0
0 0 0 4 6.5
1 0 0 5 58
0 l 0 b 52
0 0 1 7 6.8
0 0 0 8 7.4
1 0 0 9 6.0
0 1 0 10 5.6
0 0 1 1 7.5
0 0 0 12 7.8
1 0 0 13 6.3
0 1 0 14 SY)
0 0 1 15 8.0
0 0 0 16 8.4

7. (Figure 17.19) The estimated multiple regression equation is

Sales(1000s) = 6.069 — 1.363 Qtrl — 2.034 Qtr2 — 0.304Qtr3 +0.1456 ¢t (17.9)

8. Forecast for Time Period 17 (Quarter 1 in Year 5):

Sales(1000s) = 6.069 + 1.363(1) + 2.034(0) + 0.304(0) + 0.1456(17) = 7.18

Thus, accounting for the seasonal effects and the linear trend in smartphone sales,

the estimates of quarterly sales in year 5 are 7180, 6660, 8530, and 8980.

9. The dummy variables in the estimated multiple regression equation actually provide

four estimated multiple

regression equations, one for each quarter. If time

period t corresponds to quarter 1, the estimate of quarterly sales is

Quarterl :
Quarter? :

Quarter3 :
Quarterd :

(112-2) #ste (2)

Sales

Sales
Sales
Sales

6.069 — 1.363(1) — 2.034(0) — 0.304(0) + 0.1456(t)
4.71 + 0.1456t
4.04 + 0.1456t
5.77 + 0.1456t
6.07 4 0.1456t
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10. The slope of the trend line for each quarterly forecast equation is  (.1456

?

indicating a  growth  in sales of about 146 sets per quarter.

11. The intercept for the Quarter 1 equation is 4.71 and the intercept for Quarter 4 equa-
tion is 6.07. Thus, sales in Quarter 1 are 4.71 — 6.07 = —1.36  or 1360 sets

less than  in Quarter 4.

12. The estimated regression coefficient for Qtr1 in equation (17.9) provides an estimate

of the difference in sales between Quarter 1  and Quarter 4

13. Similar interpretations can be provided for = —2.03 , the estimated regression
coefficient for dummy variable Qtr2, and —(0.304 , the estimated regression

coefficient for dummy variable Qtr3.

Models Based on Monthly Data

1. For monthly data, season is a categorical variable with 12 levels and thus  12—1 = 11

dummy variables are required.

1 if January 1 if November

Monthl—{ sy Monthll—{

0 otherwise 0 otherwise

2. Other than this change, the multiple regression approach for handling seasonality

remains the same

17.6 Time Series Decomposition®

(© SUPPLEMENTARY EXERCISES: 41, 44, 47 )
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Chapter 18: Nonparametric Methods I
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EN & B3 "3

Overview

1. The statistical methods for inference presented previously are  parametric methods

2. The parametric methods begin with an  assumption ~ about the probability dis-

tribution of the  population  which is often that the population hasa  normal

distribution.

3. Based upon this assumption, statisticians are able to derive the  sampling distribution

that can be used to make inferences  about one or more parameters of the pop-

ulation, such as the population mean or the population standard deviation.

(a) (Recall Chapter 9) An inference about a population mean that was based on
an assumption that the population had a normal probability distribution with

unknown parameters p and o.

(b) Using the sample standard deviation s to estimate the population standard

deviation o.

(¢) The test statistic for making an inference about the population mean was

shown to have a ¢ distribution.
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(d) The t distribution was used to compute confidence intervals and conduct hy-

pothesis tests about the mean of a normally distributed population.

4. In this chapter we present nonparametric ~ methods which can be used to make

inferences about a population without requiring an assumption about the specific

form of the population’s probability distribution.

(a) (First section) how the binomial distribution uses two categories of data to

make an inference about a  population median

(b) (Next three sections) how  rank-ordered  data are used in nonparametric

tests about two or more populations.

(c) (Final section) use rank-ordered data to compute the rank correlation  for

two variables.

5. For this reason, these nonparametric methods are also called  distribution-free methods

6. The computations used in the nonparametric methods are generally done with

categorical data . Whenever the data are quantitative, we will transform the

data into categorical data in order to conduct the nonparametric test.

18.1 Sign Test

Hypothesis Test About a Population Median

1. The  sign test provides a nonparametric procedure for testing a hypothesis

about the value of a  population median

2. If we consider a population where no data value is exactly equal to the median,

the median is the measure of  central tendency  that divides the population so

that  50%  of the values are greater than the median and 50%  of the values

are less than the median.
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3. Whenever a population distribution is  skewed , the median is often preferred

over the mean as the best measure of central location for the population.

4. The weekly sales of Cape May Potato Chips by the Lawler Grocery Store
chain.

(a) Lawler’s management made the decision to carry the new potato chip product

based on the manufacture’s estimate that the median sales should be

$450 per week on a per store basis.

(b) (Table 18.1) After carrying the product for three-months, Lawler’s manage-
ment requested the following hypothesis test about the population median

weekly sales:

Hy : Median = 450
H, : Median # 450

TABLE 18.1 One-Week Sales of Cape May Potato Chips at 10 Lawler
Grocery Stores

Store Number Weekly Sales ($) Store Number Weekly Sales ($)
56 485 63 474
19 562 39 662
36 415 84 380
128 860 102 515
12 426 44 721

(c) (Table 18.2) In conducting the sign test, we compare each sample observation

to the  hypothesized value  of the population median.

i. If the observation is greater than the hypothesized value, we record a plus
sign 747

ii. If the observation is less than the hypothesized value, we record a minus
sign 7

iii. If an observation is exactly equal to the hypothesized value, the observa-

tion is  eliminated from the sample and the analysis proceeds with

the smaller sample size, using only the observations where a plus sign or

a minus sign has been recorded.
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TABLE 18.2 Lawler Sample Data for the Sign Test About the Population
Median Weekly Sales

Store Number Weekly Sales ($)  Sign Store Number Weekly Sales ($) Sign

56 485 + 63 474 +
19 562 + 39 662 +
36 415 = 84 380 =
128 860 + 102 515 +
12 426 = 44 721 +

(d) Note that there are 7 plus signs and 3 minus signs.

5. The assigning of the plus signs and minus signs has made the situationa  hinomial

distribution  application. The sample size 5 = 10  is the number of trials.

There are two outcomes possible per trial, a  plus  sign or a  minus  sign,

and the trials are independent. Let p  denote the probability of a plus sign.

6. If the population median is 450, p would equal (.50 as there should be 50%
plus signs and 50% minus signs in the population. Thus, in terms of the binomial
probability p, the sign test hypotheses about the population median are converted
to the following hypotheses about the binomial probability p.

Hy : Median = 450 N Hy:p=0.5
H, : Median # 450 H,:p#05

(a) If Hy cannot be rejected, we cannot conclude that p is different from 0.50 and

thus we cannot conclude that the population median is different from 450.

(b) If Hy is rejected, we can conclude that p is not equal to 0.50 and thus the

population median is not equal to 450.

7. (Table 5 in Appendix B)(Table 18.3)(Figure 18.1) With n = 10 stores or trials and
p = 0.50, obtain the binomial probabilities for the number of plus signs under the
assumption Hy is true. (X ~ B(n =10,p = 0.5) )
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TABLE 18.3 Binomial Probabilities with n = 10 and p = .50

Number of
Plus Signs Probability

.0010
.0098
0439
172
.2051
2461
.2051
172
0439
.0098
0010

(=)

O 0o ~N R WwN =

—

FIGURE 18.1  Binomial Sampling Distribution for the Number of Plus Signs
When n = 10 and p = .50

A5 |

Probability

05 -

1
0 1 2 a) 4 5 6 7 8 9 10

Number of Plus Signs

(a) Use a 0.10 level of significance for the test.

(b) Since the observed number of plus signs for the sample data, 7, is in the upper
tail of the binomial distribution, we compute the probability of obtaining 7 or

more plus signs

P(X >7)=0.1172 4+ 0.0439 + 0.0098 4 0.0010 = 0.1719

(c) Since we are using a two-tailed hypothesis test, this upper tail probability is

doubled to obtain the  p-value = 2(0.1719) = 0.3438

(d) With  p-value > o« , we cannot reject Hy. In terms of the binomial prob-

ability p, we cannot reject Hy : p = 0.50, and thus we cannot reject the

hypothesis that the population median is $450.
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8. The one-tailed sign tests about a population median:

(a) Formulated the hypotheses as an  upper tail test

Hy : Median < 450
H, : Median > 450

(b) The corresponding p-value is equal to the binomial probability that the number

of plus signs is  greater than or equal to 7 found in the sample.

(c) This one-tailed p-value:  0.1172 + 0.0439 + 0.0098 + 0.0010 = 0.1719

(d) If the example were converted to a lower tail test, the p-value would have been

the probability of obtaining 7 or fewer plus signs.

(e) The binomial probabilities provided in Table 5 of Appendix B can be used to

compute the p-value when the sample size is 20 or less

(f) With larger sample sizes, we rely on the  normal distribution approximation

of the binomial distribution to compute the p-value; this makes the computa-

tions quicker and easier.

Use the Normal Distribution to Approximate the Binomial Prob-
ability

1. One year ago the median price of a new home was $236,000. However, a

current downturn in the economy has real estate firms using sample data on recent
home sales to determine if the population median price of a new home is less today

than it was a year ago.

(a) The hypothesis test about the population median price of a new home is as

follows:

Hy - Median > 236,000
H, : Median < 236,000

(b) We will use a 0.05 level of significance to conduct this test. A random sample
of 61 recent new home sales found 22 homes sold for more than
$236,000, 38  homes sold for less than $236,000, and one  home sold
for $236,000.
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(c) After deleting the home that sold for the hypothesized median price of $236,000,
the sign test continues with 22 plus signs, 38 minus signs, and a sample of

60 homes

(d) The null hypothesis that the population median is greater than or equal to
$236,000 is expressed by the binomial distribution hypothesis  H, : p > 0.50

(e) If Hy were true as an equality, we would expect  0.50(60) = 30  homes to

have a plus sign.

(f) The sample result showing 22 plus signs is in the lower tail of the binomial
distribution. Thus, the p-value is the probability of 22 or fewer plus signs
when p = 0.50.

(g) While it is possible to compute the exact binomial probabilities for 0, 1,2, - - -
to 22 and sum these probabilities, we will use the normal distribution approx-

imation of the binomial distribution to make this computation easier.

2. Normal approximation of the sampling distribution of the number of plus
signs when H; : p = 0.50: For this approximation (_ n > 20 ), the mean and

standard deviation of the normal distribution are:

Mean : n = np = 0.5n (181)

Standard deviation: 0 = /np(1 — p) = /0.25n (18.2)

3. With n = 60 homes and p = 0.50, the sampling distribution of the number of plus

signs can be approximated by a normal distribution with

p=050n=05060)=30, o=v02mn= /0.25(60) = 3.873

4. The binomial probability distribution is discrete and the normal probability distri-
bution is continuous. To account for this, the binomial probability of 22 is com-

puted by the normal probability interval 21.5 to 22.5 . The 0.5 added to and

subtracted from 22 is called the continuity correction factor.

5. Thus, to compute the p-value for 22 or fewer plus signs we use the normal distribu-
tion with p = 30 and o = 3.873 to compute the probability that the normal random

variable, X, has a value less than or equal to 22.5.

X ~ N(30,3.873%), P(X < 22.5)=?
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6. (Figure 18.2) Using this normal distribution, we compute the p-value as follows:

22.5—-30

-value= PX <25 =P(Z<
P (X =225) ( = T3373

) = P(Z < —1.94) = 0.0262

7. With 0.0262 < 0.05, we  reject the null hypothesis and conclude that the

median price of a new home is  less than  the $236,000 median price a year ago.

FIGURE 18.2 Normal Distribution Approximation of the p-Value for the Sign
Test About the Median Price of New Homes

2255 30

}

Includes the continuity
correction factor

Hypothesis Test with Matched Samples

1. (Recall Chapter 10) Using quantitative data  and assuming that the differ-

ences between the pairs of matched observations were  normally distributed,

the ¢ distribution was used to make an inference about the difference between

the means of the two populations.

2. Use the nonparametric sign test to analyze  matched-sample  data. the sign

test enables us to analyze categorical as well as quantitative data and requires no

assumption about the distribution of the differences.

3. This type of matched-sample design occurs in  market research ~ when a sample

of n potential customers is asked to compare two brands of a product such as
coffee, soft drinks, or detergents. Without obtaining a quantitative measure of each
individual’s preference for the brands, each individual is asked to state a brand

preference.
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4. Sun Coast Farms produces an orange juice product called Citrus Val-
ley. The primary competition for Citrus Valley comes from the producer of an

orange juice known as Tropical Orange. In a consumer preference comparison of
the two brands, 14 individuals were given unmarked samples of the two orange juice

products. The brand each individual tasted first was selected randomly.

(a) If the individual selected Citrus Valley as the more preferred, a  plus sign

was recorded.

(b) If the individual selected Tropical Orange as the more preferred, a  minus sign

was recorded.

(c) If the individual was unable to express a difference in preference for the two

products, no sign  was recorded.

5. (Table 18.4) Deleting the two individuals who could not express a preference for
either brand, the data have been converted to a sign test with 2 plus  signs and

10 minus  signs for the 5 = 12 individuals who could express a preference

for one of the two brands.

TABLE 18.4 Preference Data for the Sun Coast Farms Taste Test

Individual Preference Sign  Individual Preference Sign

1 Tropical Orange = 8 Tropical Orange =
2 Tropical Orange = ¥ Tropical Orange =
3 Citrus Valley + 10 No Preference

4 Tropical Orange = 1 Tropical Orange =
5 Tropical Orange = 172 Citrus Valley +
6 No Preference U3 Tropical Orange =
7 Tropical Orange = 14 Tropical Orange =

6. Letting p  indicate the proportion of the population of customers who prefer

Citrus Valley orange juice, we want to test the hypotheses that there is no difference

between the preferences for the two brands as follows:
Hy : p=0.50
H, : p # 0.50
7. If Hy cannot be rejected, we cannot conclude that there is a difference in preference

for the two brands. However, if Hy can be rejected, we can conclude that the

consumer preferences differ for the two brands.
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8. (Table 18.5) We will conduct the sign test (v = 0.05). The sampling distribution for
the number of plus signs is a  binomial  distribution with p = 0.50 and n = 12.

( X~Bn=12,p=05) )

TABLE 18.5 Binomial Probabilities with n = 12 and p = .50

Number of
Plus Signs Probability
0 .0002
! .0029
2 .0161
3 .0537
4 .1208
5 .1934
6 .2256
7 .1934
8 .1208
Q .0537
10 .0161
1" .0029
12 .0002

9. Under the assumption Hj is true, we would expect  0.50n = 0.50(12) =6  plus

signs. With only two plus signs in the sample, the results are in the  lower tail

of the binomial distribution.

10. To compute the p-value for this two-tailed test, we first compute the probability of 2
or fewer plus signs and then  double  this value. Using the binomial probabilities
of 0, 1, and 2 shown in Table 18.5, the p-value is

p-value = 2(0.0002 + 0.0029 + 0.0161) = 0.0384 < 0.05

11. We reject Hy. The taste test provides evidence that consumer preference  differs significantly

for the two brands of orange juice. We would advise Sun Coast Farms of this result
and conclude that the competitor’s Tropical Orange product is the more preferred.

Sun Coast Farms can then pursue a strategy to address this issue.

12. Similar to other uses of the sign test, one-tailed tests may be used depending upon

the application.

13. As the sample size becomes large, the  normal distribution approximation  of

the binomial distribution will ease the computation.
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14. While the Sun Coast Farms sign test for matched samples used categorical preference

data, the sign test for matched samples can be used with  quantitative  data as

well.

(a) This would be particularly helpful if the paired differences are not normally

distributed and are  skewed .

(b) In this case a positive difference is assigned a plus sign, a negative difference

is assigned a negative sign, and a zero difference is removed from the sample.

(c¢) The sign test computations proceed as before.

18.2 Wilcoxon Signed-Rank Test

1. (Recall Chapter 10) The parametric test for the matched-sample  experiment

requires quantitative data and the assumption that the differences  between

the paired observations are normally distributed. The ¢ distribution  can then

be used to make an inference about the difference between the means of the two

populations.

2. The  Wilcoxon signed-rank test is a nonparametric procedure for analyzing

datafroma matched-sample experiment . Thetest uses quantitative data

but does not require the assumption that the differences between the paired obser-

vations are normally distributed.

3. It only requires the assumption that the differences  between the paired obser-

vations have a symmetric distribution.

4. This occurs whenever the shapes  of the two populations are the same and the
focus is on determining if there is a difference between the medians  of the two

populations.
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5. Production Task Completion Times: Consider a manufacturing firm that

is attempting to determine whether two production methods differ in terms of task

completion time.

(a) (Table 18.6) Using a matched-samples experimental design, 11 randomly se-

(b)

()

lected workers completed the production task two times, once using method A
and once using method B. The production method that the worker used first

was randomly selected.

TABLE 18.6 Production Task Completion Times (Minutes)

Method
Worker A B Difference
1 10.2 25 Vi
2 9.6 3.8 -2
3 9.2 8.8 A4
4 10.6 10.1 i5
5 9.9 10.3 -4
& 10.2 93 9
7 10.6 10.5 1
8 10.0 10.0 .0
2 11.2 10.6 b
10 10.7 10.2 5
11 10.6 2.8 8

A positive difference indicates that method A required more time; a

negative  difference indicates that method B required more time.

Do the data indicate that the two production methods differ significantly in

terms of completion times? If we assume that the differences havea  symmetric

distribution but not necessarily a normal distribution, the Wilcoxon signed-

rank test applies.
In particular, we will use the Wilcoxon signed-rank test for the difference

between the median  completion times for the two production methods.

Hy Median for method A — Median for method B = 0
H, : Median for method A — Median for method B # 0

If Hy cannot be rejected, we will not be able to conclude that the median
completion times are different. However, if Hj is rejected, we will conclude

that the median completion times are different.
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6. The Wilcoxon signed-rank test steps (o = 0.05):

(a) Discard the difference of zero  for worker 8 and then compute the  absolute value

of the differences  for the remaining 10 workers.

(b) Rank these absolute differences from  lowest to highest . The first (second)

smallest absolute difference of 0.1 (0.2) for worker 7 (2) is assigned the rank of

1 (2). This ranking of absolute differences continues with the largest absolute

difference of 0.9 for worker 6 being assigned the rank of 10. The tied

absolute differences of 0.4 (0.5) for workers 3 and 5 (4 and 10) are assigned the
average rank  of 3.5 ( 5.5).

(c) (Table 18.7) Each rank is given the sign  of the original difference for the

worker.

TABLE 18.7 Ranking the Absolute Differences and the Signed Ranks for the

Production Task Completion Times

Absolute Signed Ranks
Worker Difference Difference Rank Negative Positive

1 o7 7 8 8

2 -2 2 2 2

2 4 4 35 35

4 5 5 55 s

5 —.4 4 35 _35

6 9 3% 10 10

7 N 1 1 1

8 .0

9 6 & 7 -
10 5 5 55 55
1 8 8 9 o

Sum of Positive Signed Ranks T+ = 49.5
e

(d) Let _T*  denote the sum of the positive signed ranks (T = 49.5). We will

use T as the Wilcoxon signed-rank test statistic.

(e) Sampling Distribution of 7" for the Wilcoxon Signed-Rank Test: If
the medians of the two populations are equal and the number of matched
pairs is 10 or more, the sampling distribution of 7" can be approximated by

a  normal distribution

Mean : pr+ = n(n4—l—1) (18.3)
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nn+1)2n+1)
24

Standard deviation : op+ = \/ (18.4)

Distribution Form: Approximately normal for n > 10 .

7. Production Task Completion Times:

(a) After discarding the observation of a zero difference for worker 8, the analysis

continues with the n = 10 matched pairs.

1
i n(n4+ ): 10(1(31—#1) _ o975

1)(2n + 1
e \/n(n+ )2n+1) \/10(10+1)(10n+1) :\/2310 98107
24 24 24

(b) (Figure 18.3) The sampling distribution of the T test statistic.

FIGURE 18.3 Sampling Distribution of T* for the Production Task
Completion Time Example

Sampling distribution
of T+

| T+

(¢) Compute the two-tailed p-value for the hypothesis that the median comple-
tion times for the two production methods are equal. Since the test statistic

Tt =495 is in the upper tail  of the sampling distribution, we begin by

computing the upper tail probability — P(7" > 49.5)

(d) Since the sum of the positive ranks T is discrete and the normal distribu-
tion is continuous, we will obtain the best approximation by including the

continuity correction  factor. Thus, the discrete probability of 7+ = 49.5

is approximated by the normal probability interval, 49 to 50 , and the
probability that T > 49.5 is approximated by:

49 — 27.5

P(T*>495)= p(->
(T7 2 49.5) <z— 0.8107

) = P(z > 2.19)
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(e) Using the standard normal distribution table and z = 2.19, we see that the
two-tailed p-value =  2(1—0.9857) = 0.0286 . With the p-value < 0.05, we

reject Hy and conclude that the median completion times for the two produc-

tion methods are not equal.

(f) With 7" being in the upper tail of the sampling distribution, we see that
method A led to the longer completion times. We would expect management

to conclude that method B is the faster or better production method.

8. One-tailed Wilcoxon signed-rank tests are possible. For example, if initially
we had been looking for statistical evidence to conclude method A had the larger

median completion time than method B:

Hy Median for method A — Median for method B <0
H, : Median for method A — Median for method B > 0

9. (Recall Section 18.1) the sign test could be used for both a hypothesis test about a

population median and a hypothesis test with matched samples.

10. The Wilcoxon signed-rank test can also be used for a nonparametric test about

a  population median . This test makes no assumption about the population

distribution other than that it is  symmetric

11. If this symmetric assumption is appropriate, the Wilcoxon signed-rank test is the
preferred nonparametric test for a population median. However, if the population

is  skewed , the sign test is preferred.

12. With the Wilcoxon signed-rank test, the differences between the  observations

and the hypothesized value  of the population median are used instead of the

differences between the matched-pair observations.
13. NOTES+COMMENTS:

(a) The Wilcoxon signed-rank test for a population median is based on the assump-
tion that the population is symmetric. With this assumption, the population
median  is equal to the population mean . Thus, the Wilcoxon signed-

rank test can also be used as a test about the  mean of a symmetric population
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(b) There are several variations of the Wilcoxon signed-rank test that generally
provide similar but not identical results. The test we use in section 18.2 is

based on a normal approximation  (which is much easier to calculate).

(¢) JMP uses the exact Wilcoxon signed-rank test when n < 20 and a Student’s ¢

approximation when n > 20.

18.3 Mann-Whitney-Wilcoxon (MWW) Test

1. (Recall Chapter 10) A hypothesis test (t-test) about the difference between the

means of two populations using two independent samples:

a is parametric test require uantitative ata and the assumption tha
Thi tric test ired q dat d th tion that

both populations had a  normal  distribution.

(b) If population standard deviations ¢y and oy were unknown, the sample stan-

dard deviations s; and s, provided estimates of o1 and 0.

(c) The t distribution was used to make an _ inference  about the difference

between the means of the two populations.

2. We present a nonparametric test for the difference between two populations based
on two independent samples. It can be used with either  ordinal data or

quantitative  data and it does not require the assumption that the populations

have a normal distribution.

3. Versions of the test were developed jointly by Mann and Whitney and also by

Wilcoxon. As a result, the test has been referred to as the ~ Mann-Whitney test

and the  Wilcoxon rank-sum test . The tests are equivalent and both ver-

sions provide the same conclusion. We will refer to this nonparametric test as

the  Mann-Whitney-Wilcoxon (MWW)  test (e.g., a two-tailed test):

Hy : The two populations are  identical

H, : The two populations are not identical
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(i.e., either population may provide the smaller or larger values.)

4. If Hy is rejected, we are using the test to conclude that the populations are not

identical and that population 1 tends to provide either  smaller or larger ~ values

than population 2.

5. (Figure 18.4) A situation where population 1 tends to provide smaller values than
population 2. (Note that it is not necessary that all values from population 1 be

less than all values from population 2.)

FIGURE 18.4 Two Populations Are Not Identical with Population 1 Tending
to Provide the Smaller Values

Population 1 Population 2

6. First illustrate the MWW test using  small samples ~ with  rank-ordered data

Later, we will introduce a  large-sample  approximation based on the  normal
distribution that will simplify the calculations required by the MWW test.

7. Consider the on-the-job performance ratings for employees at a Showtime

Cinemas 20-screen multiplex movie theater.

(a) During an employee performance review, the theater manager rated all 35
employees from best (rating 1) to worst (rating 35) in the theater’s annual
report. Knowing that the part-time employees were primarily college and high
school students, the district manager asked if there was evidence of a significant

difference in performance for college students compared to high school students.

(b) In terms of the population of college students and the population of high
school students who could be considered for employment at the theater, the

hypotheses were:

Hy : College and high school student populations are identical

in terms of performance
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H, : College and high school student populations are not identical

in terms of performance

(c) (Table 18.8) The theater manager’s overall performance rating based on all 35

employees was recorded for each of these employees.

TABLE 18.8  Performance Ratings for a Sample of College Students and a
Sample of High School Students Working at Showtime Cinemas

College Manager's High School Manager's
Student Performance Rating Student Performance Rating
1 15 1 18
2 3 2 20
3 23 3 32
4 8 4 9
5 25

(d) (Table 18.9)(The combined-sample ranks) Use a 0.05 level of significance

for this test and  rank  the combined samples  from low to high

TABLE 18.9 Ranks for the Nine Students in the Showtime Cinemas
Combined Samples

Manager's Manager's
College  Performance High School  Performance

Student Rating Rank Student Rating Rank

1 15 4 1 18 5

2 3 1 20 -]

3 23 7 3 5 9

4 8 2 4 9 3

Sum of Ranks 14 : = i

Sum of Ranks 1

(e) Sum the ranks for cach sample as shown in Table 18.9. The sum of ranks
for the first sample will be the test statistic W for the MWW test: W =
4+1+7+2=14.

(f) We will always follow the procedure of using the sum of the ranks for ~ sample 1

as the test statistic W

8. Why the sum of the ranks will help us select between the two hypotheses: Hy: The

two populations are identical and H,: The two populations are not identical.

(112-2) #EtE8 (D) February 19, 2024



Chapter 18 Nonparametric Methods Page 19/30

(a) Letting C' denote a college student and H denote a high school student, suppose
the ranks of the nine students had the following order with the four college

students having the four lowest ranks.

Rank 1 2 3 45 6 7 8 9
Student C C C C HHHHH

(b) Notice that this permutation or ordering separates the two samples, with the

college students all having a  lower rank  than the high school students.

(¢) Thisis a strong indication that the two populations are  not identical . The

sum of ranks for the college students in thiscaseis W =1+2+3+4 =10

(d) Now consider a ranking where the four college students have the four highest

ranks.
Rank 1 2 3 4 5 6 7 8 9
Student HHHHHCCCC

This is another strong indication that the two populations are not identical.

The sum of ranks for the college students in this caseis W =6+ 7+ 8+ 9 = 30

(e) Thus, we see that the sum of the ranks  for the college students must be

between 10 and 30. Values of 11/ near 10  imply that college students have

lower ranks than the high school students, whereas values of 11/ near 30

imply that college students have higher ranks than the high school students.

(f) Either of these extremes would signal the two populations are not identical.
However, if the two populations are identical, we would expect a mix in
the ordering of the C’s and H’s so that the sum of ranks W is closer to the

average of the two extremes, or nearer to (10 + 30)/2 = 20

9. (Figure 18.5)(Table 18.10) Making the assumption that the two populations are

identical, we used a computer program to compute all possible orderings  for

the nine students. For each ordering, we computed the sum of the ranks for

the college students. This provided the probability distribution showing the exact
sampling distribution of W.
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FIGURE 18.5 Exact Sampling Distribution of the Sum of the Ranks
for the Sample of College Students

A0~
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|II
30

TABLE 18.10 Probabilities for the Exact Sampling Distribution of the Sum of

the Ranks for the Sample of College Students

w Probability w Probability
10 .0079 20 .0952
11 .0079 21 .0873
12 0159 22 0873
13 .0238 23 0714
14 .0397 24 0635
15 .0476 25 0476
16 .0635 26 .0397
17 0714 27 .0238
18 .0873 28 .0159
19 .0873 29 .0079
30 .0079

10. Use the sampling distribution of W in Figure 18.5 to compute the p-value for
the test. Table 18.9 shows that the sum of ranks for the four college student is
W =14 . Because this value of W is in the lower tail  of the sampling

distribution, we begin by computing the lower tail probability — P(1/ < 14)

P(W <14) = P(10)+ P(11) + P(12) + P(13) + P(14)
= 0.0079 4 0.0079 + 0.0159 + 0.0238 + 0.0397 = 0.0952

11. The two-tailed p-value = 2(0.0952) = 0.1904 . With a = 0.05 as the level of

significance and p-value > 0.05, the MWW test conclusion is that we cannot reject
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the null hypothesis that the populations of college and high school students are

identical.

12. Use the same combined-sample ranking procedure and use the normal  distri-

bution approximation of W to compute the p-value and draw the conclusion.

13. Third National Bank.

(a) The bank manager is monitoring the balances maintained in checking accounts
at two branch banks and is wondering if the populations of account balances

at the two branch banks are identical.

(b) (Table 18.11) Two independent samples of checking accounts are taken with

sample sizes n; = 12 at branch 1 and ny = 10

TABLE 18.11 Account Balances for Two Branches of Third National Bank

Branch 1 Branch 2
Account Balance ($) Account Balance ($)
1 1095 1 885
2 955 2 850
3 1200 3 915
4 1195 4 950
5 925 5 800
b 950 6 750
7 805 7 865
8 945 8 1000
9 875 9 1050
10 1055 10 935
11 1025
12 975

(c) (Table 18.12) The first step in the MWW test is to rank the combined data
from the lowest to highest values. In that case of the two or more values are
the same, the tied values are assigned the average rank of their positions in

the combined data set.
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TABLE 18.12 Assigned Ranks for the Combined Account Balance Samples

Branch Account Balance Rank
2 b 750 1
2 5 800 2
1 i 805 3
2 2 850 4
2 7 865 5
1 Q9 875 6
2 1 885 7
2 3 EHS 8
1 5 925 9
2 10 935 10
1 8 945 11
1 b 950 125
2 4 950 12.5
1 2 955 14
1 12 975 {15
2 8 1000 16
1 11 1025 17
2 9 1050 18
1 10 1055 19
1 1 1095 20
1 4 1195 21
1 g 1200 22

(d) (Table 18.13) The next step is to sum the ranks for each sample: 169.5 for
sample 1 and 83.5 for sample 2 are shown. Thus, we have W = 169.5. When

both samples sizes are 7 or more , a normal approximation of the sampling

distribution of W can be used.

TABLE 18.13 Combined Ranking of the Data in the Two Samples from Third

National Bank

Branch 1 Branch 2
Account Balance ($) Rank Account Balance ($) Rank
1 1095 20 1 885 7
24 955 14 2 850 4
5 1200 22 3] 9215 8
4 1195 2 4 950 1225
5 925 Q 5 800 2
b 950 {225 -] 750 1
7 805 3 7 865 5
8 945 11 8 1000 16
& 875 6 9 1050 18
10 1055 19 10 935 10
i 1025 17 Sum of Ranks 83.5
12 975 15

Sum of Ranks 169.5

14. Under the assumption that the null hypothesis is true and the populations are
identical, the sampling distribution of the test statistic W is:

Mean :  puy = (1/2)n1(ng + no + 1) (18.5)
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Standard deviation : oy, = \/(1/12)n1n5(ny + no + 1) (18.6)

Distribution form: Approximately normal provided n; > 7 and ny, > 7

15. Since the test statistic W is discrete and the normal distribution is continuous,

we will again use the  continuity correction  factor for the normal distribution

approximation.

16. Third National Bank.

(a) (Figure 18.6) Given the sample sizes 7, = 12 and n, = 10, equations (18.5)

and (18.6) provide the following mean and standard deviation for the sampling

distribution:

Mean : py = (1/2)(12)(12 + 10 4+ 1) = 138

Standard deviation : oy = 1/(1/12)(12)(10)(12 + 10 + 1) = 15.1658

FIGURE 18.6 Sampling Distribution of W for the Third National Bank Example

Sampling distribution
of W
if populations
are identical

ow = 15.1658

(b) With W = 169.5 in the upper tail  of the sampling distribution, we have

the following p-value calculation:

169 — 138

PW >1695)= P (2>
15.1658

) = P(z > 2.04)

(c¢) Using the standard normal random variable and z = 2.04, the two-tailed p-

value = 2(1-0.9793) = 0.0414 . With p-value < 0.05, reject H, and

conclude that the two populations of account balances are not identical. The

upper tail value for test statistic W indicates that the population of account

balances at branch 1 tends to be  larger .

(112-2) #EtE (D) February 19, 2024



Chapter 18 Nonparametric Methods Page 24/30

17. Some applications of the MWW test make it appropriate to assume that the two

populations have identical shapes  and if the populations differ, it is only by a

shift in the location of the distributions.

18. If the two populations have the  same shape , the hypothesis test may be stated

in terms of the difference between the two  population medians . Any difference

between the medians can be interpreted as the shift in location of one population
compared to the other. In this case, the three forms of the MWW test about the

medians (M;,i = 1,2) of the two populations are as follows:

Two-Tailed Test Lower Tail Test Upper Tail Test
H()Z Ml—MQ =0 H()Z Ml—MQ Z 0 H()Z Ml—MQ S 0
Haf Mi—M, 7é 0 Hai Mi—M,; <0 Haf Mi—M; >0

18.4 Kruskal-Wallis Test

1. (Recall Chapter 13, ANOVA) We considered a parametric test for three or more

populations when we used  quantitative data  and assumed that the popula-

tions had normal distributions with the same standard deviations. Based on an

independent random sample from each population, we used the [ distribution

to test for differences among the  population means

2. The nonparametric  Kruskal-Wallis test  is based on the analysis of independent

random samples from each of [ populations. This procedure can be used

with either  ordinal data or  quantitative data and does not require the

assumption that the populations have normal distributions:
Hy : All populations are  identical

H, : Not all populations are identical

3. If Hy is rejected, we will conclude that there is a difference among the popula-

tions with one or more populations tending to provide  smaller or larger  values

compared to the other populations.
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4. Performance Evaluation Ratings for 20 Williams Employees

(a)

(Table 18.14) Williams Manufacturing Company hires employees for its man-
agement staff from three different colleges. Recently, the company’s personnel
director began reviewing the annual performance reports for the management
staff in an attempt to determine whether there are differences in the perfor-
mance ratings among the managers who graduated from the three colleges.
The performance rating shown for each manager is recorded on a scale from 0
to 100, with 100 being the highest possible rating.

TABLE 18.14 Performance Evaluation Ratings for 20 Williams Employees

College A College B College C
25 60 50
70 20 70
60 30 60
85 15 80
S 40 90
90 35 70
80 75

Suppose we want to test whether the three populations of managers are identi-
cal in terms of ~ performance ratings . We will use a 0.05 level of significance

for the test.

(Table 18.15) The first step in the Kruskal-Wallis procedure is to _ rank the

combined samples  from lowest to highest values. Note that we assigned

the average ranks to tied performance ratings of 60, 70, 80, and 90.

TABLE 18.15 Combined Rankings for the Three Samples

College A Rank College B Rank College C Rank
25 3 60 9 50 i
70 12 20 2 70 12
60 & 30 4 60 7
85 1z 15 1 80 1545
95 20 40 6 90 18.5
90 185 35 5 70 12
80 155 Sum of Ranks 27 75 14
Sum of Ranks 95 Sum of Ranks 88

5. The Kruskal-Wallis test statistic:

k
12 R?
H=|— 2l -3 1 18.7
{TLT(HT +1) ; n; ] (nr +1) ( )
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where

(b)

()

k = the number of populations
n; =the number of observations in sample ¢
ny = Zle n; = the total number of observations in all samples

R; = the sum of the ranks for sample ¢

Kruskal and Wallis were able to show that, under the null hypothesis assump-

tion of identical populations, the sampling distribution of H can be approxi-

mated by a  chi-square  distribution with ~ (k—1)  degrees of freedom.

This approximation is generally acceptable if the  sample sizes  for each of

the k populations are all  greater than or equal to five

The null hypothesis of identical populations will be rejected if the test statistic
H is large. As a result, the Kruskal-Wallis test is  always  expressed as an

upper tail  test.

6. Performance Evaluation Ratings for 20 Williams Employees

(a)

(b)

()

The value of the Kruskal-Wallis test statistic:

12 [(95)°  (27)°  (88)?

H:
00 | 7 6 7

—3(20+ 1) = 8.92

We find X(2).025,2 = 7.378  has an area of 0.025 in the upper tail of the chi-

square distribution and 2, , =9.21  has an area of 0.01 in the upper tail

of the chi-square distribution.

With H = 8.92 between 7.378 and 9.21, we can conclude that the p-value
is between 0.025 and 0.01. Because p-value < a = 0.05, we reject Hy and
conclude that the three populations are not all the same. The three populations
of performance ratings are not identical and differ significantly depending upon

the college.

Because the sum of the ranks is relatively low for the sample of managers

who graduated from  college B, it would be reasonable for the company

to either reduce its recruiting from college B, or at least evaluate the college

B graduates more thoroughly before making a hiring decision.
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7. In some applications of the Kruskal-Wallis test, it may be appropriate to make the

assumption that the populations have identical shapes  and if they differ, it is

only by a  shift in location  for one or more of the populations.

8. If the k populations are assumed to have the same shape, the hypothesis test can

be stated in terms of the population medians . In this case, the hypotheses for

the Kruskal-Wallis test would be written as follows:

HO : MleQZZMk
H, : Not all Medians are equal

9. NOTES+COMMENTS: The example in this section used quantitative data on em-
ployee performance ratings to conduct the Kruskal- Wallis test. This test could also

have been used if the data were the ordinal rankings  of the 20 employees in

terms of performance. In this case, the test would use the ordinal data directly.
The step of converting the quantitative data into rank-ordered data would not be

necessary.

18.5 Rank Correlation

1. (Recall Chapter 3) The Pearson product moment correlation coefficient is a measure

of the linear association  between two variables using quantitative data.

2. The Spearman rank-correlation coefficient has been developed for a correlation mea-

sure of association between two variables when  ordinal or rank-ordered data

are available: n2
6>, d; (18.8)( )

T n(n? —1)

where

n =the number of observations in the sample

x; = the rank of observation ¢ with respect to the first variable
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y; = the rank of observation ¢ with respect to the second variable

di = z;—y;

3. The Spearman rank-correlation coefficient ranges from  —1.0 to +1.0  and its

interpretation is similar to the Pearson product moment correlation coefficient for

quantitative data.

4. Arank-correlation coefficient near  +1.0 (—1.0) (0) indicatesastrong positive

(negative) (no)  association between the ranks for the two variables.

5. Sales Potential and Actual Two-Year Sales Data

(a) A company wants to determine whether individuals who had a greater potential
at the time of employment turn out to have higher sales records. To investigate,
the personnel director reviewed the original job interview reports, academic
records, and letters of recommendation for 10 current members of the sales

force.

(b) After the review, the director ranked the 10 individuals in terms of their po-
tential for success at the time of employment and assigned the individual who
had the most potential the rank of 1.

(c) (Table 18.16) Data were then collected on the actual sales for each individual
during their first two years of employment. On the basis of the actual sales

records, a second ranking of the 10 individuals based on sales performance was

obtained.

Ranking Two-Year Ranking According
Salesperson of Potential Sales (units) to Two-Year Sales

A 2 400 1

B 4 360 3

C 7 300 5

D 1 295 -}

E -} 280 7

F 3 350 4

G 10 200 10

H 9 260 8

| 8 220 9

J 5 385 2
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(d) (Table 18.17) Computation of the Spearman Rank-Correlation Coefficient for

Sales Potential and Sales Performance

TABLE 18.17 Computation of the Spearman Rank-Correlation Coefficient for
Sales Potential and Sales Performance

x; = Ranking y; = Ranking of
Salesperson of Potential Sales Performance d=x-y &
A 2 1 1 1
B 4 S 1 1
(8 E 5 2 4
D 1 6 -5 25
E 6 7 -1 1
E S 4 -1 1
G 10 10 0 0
H 9 8 1 il
| 8 Q -1 1
J 5 2 3 9
2d? =44

. 63d} R R
n(n® + 1) 100100 — 1) °

(e) rs = 0.733 indicates a  positive correlation ~ between the ranks based on

potential and the ranks based on sales performance. Individuals who ranked
higher in potential at the time of employment tended to rank higher in two-year

sales performance.

6. Use the sample rank correlation r; to make an inference about the population rank

correlation coefficient p;:
Ho: _p.=0 — Ha:_p#0

7. (S ampling distribution of r;) Under the assumption that the null hypothesis
is true and the population rank-correlation coefficient is 0, the following sampling

distribution of r, can be used to conduct the test.
Mean: i, =0 (18.9)

Standard deviation : o, = ! (18.10)

n—1

Distribution form: Approximately normal provided n > 10

8. Sales Potential and Actual Two-Year Sales Data
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(a) The sample rank-correlation coefficient for sales potential and sales perfor-

mance is  r, =0.733 . Using equation (18.9), we have ;. =0 , and
using equation (18.10), we have ¢, = /1/(10 —1) = 0.333

(b) With the sampling distribution of ry approximated by a normal distribution,

the standard normal random variable z becomes the test statistic with

L rs — ,urs _ 0733 — O e 22()
- 0.333

(c) Using the standard normal probability table and z = 2.20, we find the two-
tailed p-value = 2(1-.9861) = 0.0278 . With a 0.05 level of significance,

p-value < «a. Thus, we reject the null hypothesis that the population

rank-correlation coefficient is zero.

(d) The test result shows that there is a  significant  rank correlation between

potential at the time of employment and actual sales performance.
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0. (KB 5 )

RANEZ ERMEHEEE  URERENERESERAREREZH - AR ESEZHRA -
AESEOALEEREERTR  EUERES  MIRABTHERBELS - EE -

-

1. (15%, 5% cach) BRI (EERAI - ABERS MR ERTRINER R AN ERNER):

(a) FEZEIKZEE (level of significance) (F: DL " BREIBE 1 BH)
(b) BCEIERl (matched samples)
(c) R (chi-square distribution)(5f: AR LHEHEERERE)

2. (35%) B /A

(a) (5%) ETHAANBRDBER - AN WEREFHENMENE —SREEHNR B2
EEME (Left-tailed test) ~ BEME (Right- taﬂed test) %DEE)ZT (Two-tailed test) - At
TEIE L HERREERERR? (fﬂfﬂ: R TERTREETERRIEE .. MARIRE )

(b) (%) AEETEONERRERE  RURE p1E/J\E°?zE%7J<_%’E () MBIER H)? (BLEREB
"p<a &R Hy EAUERERZAHN - MARRA )

(c) (5%) sHEE—1EFERA "Hypothesis Testing for Equality of Two Population Variances ; B " AR

Eiﬁ-ﬁ'f*iﬁJ Bl - BIREER "TBREAMT? BHAME7. KRPEVHEN TEERMD?, - B
M - ERTNEHFERETERG T EEa B BRI T -

(d) (10%) ETHTNVERRRE - BM=TEHORRT I (A - REERZEBRMLBERE Hy)?

(e) (10%) ETHETHERE  KEFEERKERBENMAOBNRRERR - EERNAZREBED M -
—mREH LNER (Practlcal Advice) 18?7 5Ll "Hypothesis Tests About pi—pus: o1 and o9

/—_\_

Unknown 1 ZBI#E1TR08 -
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3. (25%) Salaries of Recent College Graduates. The Tippie College of Business obtained the fol-

lowing results on the salaries of a recent graduating class:

e Finance Majors: nq = 110, 1 = $48, 537, s% = $3.24e+08.
o Business Analytics Majors: ng = 30, Zo = $55,317, 53 = $1e+08.

(a) (5%) Formulate hypothesis so that, if the null hypothesis is rejected, we can conclude that salaries
for Finance majors are significantly lower than the salaries of Business Analytics majors. Use
a = 0.05.

(b) (10%) What is the value of the test statistic? What is the decision?
(c) (5%) What is the p-value? (kiR FRAE4EHEEERIT)
(d) (5%) What is your conclusion?

4. (25%) Repair Costs as Automobiles Age. In its 2016 Auto Reliability Survey, Consumer Reports
asked subscribers to report their maintenance and repair costs. Most individuals are aware of the
fact that the average annual repair cost for an automobile depends on the age of the automobile. A
researcher is interested in finding out whether the variance of the annual repair costs also increases
with the age of the automobile. A sample of 25 automobiles 2 years old showed a sample standard
deviation for annual repair costs of $100 and a sample of 26 automobiles 4 years old showed a sample

standard deviation for annual repair costs of $170.

(a) (5%) State the null and alternative versions of the research hypothesis that the variance in annual

repair costs is larger for the older automobiles.

(b) (10%) At o = 0.01 level of significance, what is your conclusion? (using the critical value

approach)

(c¢) (10%) What is the p-value? Discuss the reasonableness of your findings.
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5. (20%) AR M RLEAIMNEEEE (Interval Estimate of the Difference Between Two Population
Proportions):

(a) (5%) BEBRE (1 — a)100% confidence interval for p; — py °
(b) (15%) %= L - FEW (GEAR) A -

Rz
Upper tail probability p.
i p z t(80) t(85) t(90) X%15) X%m) Floa25)  Flas24)
1 0.200 0.8416 0.8461 0.8459 0.8456 19.3107 20.4651 1.4091 1.4134
2 0.100 1.2816 1.2922 1.2916 1.2910 22.3071 23.5418 1.6890 1.6960
3 0.0560 1.6449 1.6641 1.6630 1.6620 24.9958 26.2962 1.9643 1.9750
4 0.025 1.9600 1.9901 1.9883 1.9867 27.4884 28.8454 2.2422 2.2574
5 0.010 2.3263 2.3739 2.3710 2.3685 30.5779 31.9999 2.6203 2.6430
6 0.005 2.5758 2.6387 2.6349 2.6316 32.8013 34.2672 2.9176 2.9472
AR
[ ] = > ) > )
1 s1 1 52
np—1 ('nl) + no—1 (nQ)

x
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KBS - BRI E: 50 % el | B | 22 | 28 | FRTRSE | R MARKORESR . EID -
#Hit  IREIEEFE! (FE: §10~§13) | O X | x| x X
HREE: (1) BEX5F2LHE 248 EFAES - 2) BRENIERER - 3) B BRFENEXSE

B - (4) PENMEZED - (5) JHME  BEARBRFE- (6 )ﬁvﬁ%‘ﬁéuf (7) NEEERTEE/N
ERUT 40 - 8) REEEBBRERS - (9) BHH 120 7 - 8) FEB NIEERAEZEREFE BRL
ESNZEEE (AR 10 79)

AANER ERNEERE  UWERENEESERAIRERZHR - HHBRESEEGRA - AESETA
EENHFRTR  FUERES  BERMATHNERBESD - EZE -

1. (15%; 5% each) #st RaEEE (ABEERIE AT - FRAAERTHENEERAANRNER):

(a) BEZIKZEE (level of significance) (5f: DL " REEAEE 4 HB)
(b) B ER (matched samples)
(c) RA DM (chi-square distribution)(7f: AR HEKEEZERE)

2. (20%; 5% each) BIE & (A): Juicy Bun Burger @B EXEBRANSHNEHEREE 7 # MRS

BEUD = IBEARBV I ESR (HRSEMARIDA - L RSB T - MENEEE DAL - TERIER
BEPPHREEEZEMHEE  REMMASEA—UBAERAZBNEARESE - KETWEEIELE
THREt D - B! IRMEENEE -

(a) BRPUTEDH () BEAE? (i) MAKEZTE (EAR)? (i) MOLHER IR - EBEH
S B RET R ERD)?

(b) R B A —TE G A8 A 87

() (BL) BRILGEH T EEAHERRABBIRMMTT? 2 A8 )

(d) BRY EHRITE - RO DURBAIENER - BEERETHMESRT 2T FIH—BEZSHTH
B & PR FE R ARV AT 730AB0E] - )

3. (25%; 5% each) BI& & (B): BERABIUMMEE (Chi-square Test For Independence):

(a) AB—EERARETEBRFSBUSERENE F -

(b) RBBLCAIRIEIES « RAX - BEREHNENUMAEERT? (-7 Z2HIUR - AHIEER "3
Mt RER BEHESS - RETBEERNK 1200M 2 2000M ZIEH - )

(c) ERLLH - BEUIRERERMRR (Ho) ME—RR (H,) °
(d) EAEABUIMREREBMTERRAFBEZIRNMTT? Em- A% &)
(e) EFFNENEEREBIER  ZEEETRABIMRE?
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4. (30%) Assembly Methods (modified). Assembly Methods. Three different assembly methods
have been proposed for a new product. A completely randomized experimental design was chosen to
determine which assembly method results in the greatest number of parts produced per hour, and 30
workers were randomly selected and assigned to use one of the proposed methods. The number of

units produced by each worker follows.

Method | Data mean | sum | sd SSe
A 97, 73, 93, 100, 73, 91, 100, 86, 92, 95 90 900 | 9.9 | 81882
B 93, 100, 93, 55, 77, 91, 85, 73, 90, 83 84 840 | 13.0 | 72076
C 99, 94, 87, 66, 59, 75, 84, 72, 88, 86 81 810 | 12.6 | 67048

(a) (15%) Use these data and test to see whether the mean number of parts produced is the same
with each method. Use o = 0.05. Construct the ANOVA Table. (Note: identify the range of the

p-value.)

(b) (10%) Use Fisher’s LSD procedure to test for the equality of the means for methods B and C.

Use a .05 level of significance.

(¢) (5%) Use the Bonferroni adjustment to test for a significant difference between means for methods

B and C. Assume that a maximum overall experimentwise error rate of 0.05 is desired.

5. (30%) Daily High Temperatures. Bob Feller, an Iowa farmer, has recorded the daily high temper-
atures during the same five-day stretch in May over the past five years. Bob is interested in whether
this data suggests that the daily high temperature obeys a normal distribution. Use a = 0.01 and
conduct a goodness of fit test to see whether the following sample appears to have been selected from
a normal probability distribution in the following steps. (& = 71, sd = 17, sum = 1775, SS = 132957,
Use 10 classes.)

55 86 94 58 55 95 55 52 69 95 90 65 87 50 56 55 57 98 58 79 92 62 59 88 65

“SS: sum of square.
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(a) (5%) What are the values of (i) and (ii)?

Percentage z Temperatures

0.1 -1.28 i)

0.2 -0.84 (ii)

0.3 -0.52 62.16
0.4 -0.25 66.75
0.5 0.00 71.00
0.6 0.25 75.25
0.7 0.52 79.84
0.8 0.84 85.28
0.9 1.28 92.76

(b) (10%) Compute the observed frequencies for the Temperature intervals.

(¢) (15%) Compute the value of the test statistic and draw decision and conclusion.

HRE

Upper tail probability p.

-~
=

z t2r) t(28) t(29) X%7) X%g) Faory  Fen
0.200 0.8416 0.8551 0.8546 0.8542 9.8032 12.2421 1.7093 1.6558
0.100 1.2816 1.3137 1.3125 1.3114 12.0170 14.6837 2.5106 2.2987
0.050 1.6449 1.7033 1.7011 1.6991 14.0671 16.9190 3.3541 2.9604
0.025 1.9600 2.0518 2.0484 2.0452 16.0128 19.0228 4.2421 3.6472
0.010 2.3263 2.4727 2.4671 2.4620 18.4753 21.6660 5.4881 4.6009
0.005 2.5758 2.7707 2.7633 2.7564 20.2777 23.5894 6.4885 5.3611

S Ot s W NN

2

o SSTR =X n;(#; —5), LSD = tays [ MSE (1 + 1)

1
n; n;j

AR
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ZHHE 5 B 23 H () 14:10-15:50 sOEWIERY "o, BAFT "x, 1. BB SRS A BER ENESE T -
" 2. BIBIREERNE  HE—EREE
KBS - BRI E: 50 % HEl | A | R | FH | FRERES | R MERKIRER . B
i1 AESIEEA! (A §ch14~158) | O x | x | x X
eSS

BER (1) EX5ERLRE 2K BRRES - 2) BRERRFER - 3) B—ERBENE
R/LE o (4) PRIMEEED - (5) ZEAFRBRTE - (6) FEIEBRRE - (1) BoH 1207 -

RAEER ERHEHERE  UWRERENERESERAIRELEH - AHRESIHEZHRA -
AESEMTALENEETR  FUENRES  BIRTGTHNERBES - 25

Il
FiR

1. (50%) BEB/BE

(a) (10%) &

B (i) BEARMEEREE (Simple Linear Regression Model - SLR) & (ii) IEERAVE
AR - (

FRIPE—EHEFRNER) -
(b) (10%) 4% 7 7E SLR HETEZEMETE (tests of significance) - B EFREIR ¢ MU EKRER?

(c) (10%) (FL) MABIERNERE? GIRRARRINFFNTE - RRPOGFPELSE
I8 )

(d) (10%) ##1T SLR 247 - WA IBERF(E (Outliers) XS5 &% (Influential Observations)? (3!
BRABREINAZEZHTEH - KHEAOOUANAELEREZNTIR - ARESHAENAT )

(e) (3%) ERERMERAZEERINP - BEHDTRE (ANOVA Table) BEAZ F &E? (R
DB ERER F D7)

(f) (5%) SEORHWFD - HEUBSHE TBIEENHEGE, ? EHEARBAE?
2. (10%) LIB/NFIT3 - B SR IERER D ERER (5, 1) 2 (b, by) -

3. (10%) FAEBEMRMEERREID - Bl SST = SSR + SSE -
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4. (30%) Omnline Education. One of the biggest changes in higher education in recent years has been
the growth of online universities. The Online Education Database is an independent organization
whose mission is to build a comprehensive list of the top accredited online colleges. The following
table shows the retention rate (%) (FABRRERHERE) and the graduation rate (%) for 29 online

colleges.

Retention Rate (%): 7, 5im 4, 29, 33, ..., 68, 100, 100
Graduation Rate (%): 25, 25, 28, 32, 33, ..., 56, 57, 61

5%) Develop the estimated regression equation.

5%) Test for a significant relationship. Use a = 0.05. (Fst&H ¢t H ¢)

5%) Did the estimated regression equation provide a good fit? (858 ANOVA &)
5%) 7P - #EFE Coefficient "RetentionRate” PILRAIERE -

10%) T8 Adjusted R-squared, ifR%E -

~ o~ o~ o~ o~

> summary (OnlineEdu_lm)

Call:
Im(formula = GraduationRate ~ RetentionRate, data = OnlineEdu)

Residuals:
Min 10 Median 30 Max
-14.9337 -6.4945 0.9448 4.8067 13.9198

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 25.42290 3.74628 2.74e-07 ***
RetentionRate 0.28453 0.06063 6.95e-05 **x*

Signif. codes: 0 ‘***’ 0.001 “**’/ 0.01 ‘*’ 0.05 “.” 0.1 '’ 1
Residual standard error: 7.456 on 27 degrees of freedom
Multiple R-squared: 0.4492, Adjusted R-squared:
F-statistic: 22.02 on 1 and 27 DF, p-value: 6.955e-05

> anova (OnlineEdu_1lm)
Analysis of Variance Table

Response: GraduationRate

Df Sum Sg Mean Sqg F value Pr (>F)
RetentionRate 1224.3 6.955e-05 **x*
Residuals 1501.0

Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 ‘*" 0.05 *.” 0.1 '’ 1
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5. (20%) Risk of a Stroke. A 10-year study conducted by the American Heart Association provided
data on how age, blood pressure, and smoking relate to the risk of strokes. Assume that the following
data are from a portion of this study. Risk is interpreted as the probability (times 100) that the patient
will have a stroke over the next 10-year period. For the smoking variable, define a dummy variable

with 1 indicating a smoker and 0 indicating a nonsmoker.

Risk: 12, 24, 13, ..., 34, 3, 37
Age: b7, 67, 58, ..., 80, 62, 59
Pressure: 152, 163, 155, ..., 125, 117, 207

Smoker: No, No, No, ..., Yes, No, Yes

a 0 evelop an estimated regression equation at relates riskK or a stroke to € person’'s age
(a) (5%) Develop timated regression equation that relates risk of a stroke to the person’s age,

blood pressure, and whether the person is a smoker.
(b) (5%) Is smoking a significant factor in the risk of a stroke? Explain. Use a = 0.05.
(¢) (10%) What is the probability of a stroke over the next 10 years for Art Speen, a 68-year-old

smoker who has blood pressure of 1757 What action might the physician recommend for this
patient?

Coefficients:
Estimate Std. Error t value Pr(>‘t‘)
(Intercept) -91.75950 15.22276 -6.028 1.76e-05 ***

Age 1.07674 0.16596 6.488 7.49e-06 ***
Pressure 0.25181 0.04523 5.568 4.24e-05 ***
SmokerYes 8.73987 3.00082 2.912 0.0102 =

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 . 0.1 * ' 1
Residual standard error: 5.757 on 16 degrees of freedom
Multiple R-squared: 0.8735, Adjusted R-squared: 0.8498
F-statistic: 36.82 on 3 and 16 DF, p-value: 2.064e-07

> anova (Stroke_1lm)
Analysis of Variance Table

Response: Risk

Df Sum Sg Mean Sg F value Pr (>F)
Age 1 1771.98 1771.98 53.4726 1.743e-06 ***
Pressure 1 1607.66 1607.66 48.5138 3.185e-06 ***
Smoker 1 281.10 281.10 8.4826 0.01017 *

Residuals 16 530.21 33.14

Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 ‘** 0.05 *.” 0.1 " 1
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Hit IREIREEFE! (FE: §14~§18) | O X | x| x X

ARER: (1) 2EEHERLAE - 2 BRREE - 2) FRERIBFER - 3) B—ERFENE RS
BRZE - (4) PEXFEZEED - (5) tHnE  BEERFARRTE - (6) FEAEBE - (7) NEHEFER/N
HRLUT 4 i1 - (8) REIBHERZRE © (9) @0t 1207 °

0. (FER NIEEFZEREF BRLBENERE - AR5 7)
AANER ERMEARE  URAERENEESERAREEZH - WKEESHEZERA -

AESEOALEERTEETR  EUERES  BIERNGTHNERBES - 2E -

1. (20%; 5% each) #at RE@EE (AERIEAN - BRIBAAERAMENERRANNERNER):
(a) Leverage (GBER TP "1E4F 1 H)
(b) Studentized deleted residual (24{EMIREZE) (51 BRKBLUNFHRBZNOATER) -
(c) Odds ratio (fEZESETEEITHH "BELE, )
(d) Nonparametric methods (FEE}EI77)%)
2. (20%) S ETERERED  ERESHEHRAE 1 ENEE BB X)) BERAELSHEESIEER

&EY (Simple Logistic Regression Model):

(a) (5%) mRLEERSHTEREINERSEI (Logistic Regression Equation) °
(b) (5%) FRRBEHAVERGERKS 6 - HETE8S b - BUIREL " EREGEL ?
(c) (10%) "BELE ., FMEHRGHNBEERBM? FiRZ -

3. (15%) Multicollinearity

(a) (5%) What does the multicollinearity mean in the multiple regression analysis?

(b) (10%) What are the effects when the multicollinearity is severe (B&2&E)? (FBIKAARNBIES)

i

(15%, 5% each) Wilcoxon Signed-Rank Test
(a) MB—REPWERL (1BIR) - BEWRERRETHRT O - (AEZSPHBBEMEEEEL)

(b) BRLULEAIPR "ERER. K "E-RKR, (FEEHTR  FTREHEER)
(c) ZRAIRENRIRE (HKRR) K7
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5. (15%) Seasonal Sales. South Shore Construction builds permanent docks and seawalls along the
southern shore of Long Island, New York. Although the firm has been in business only five years,
revenue has increased from $308,000 in the first year of operation to $1,084,000 in the most recent

year. The following time series plot show the quarterly sales revenue in thousands of dollars. ((b)(c)
%tﬂ*ﬁ@ ! ﬂﬁﬁﬁﬁﬁf&%m%ﬁ%)

(a) (5%) What type of pattern exists in the data?

(b) (5%) Develop a regression model to account for seasonal effects in the data.

(c) (5%) Develop a regression model to account for seasonal effects and any linear trend in the time

series.

SouthShore Time Series Plot

o
S -
<
o
S

wo’)

>

c

2 o

(0] o —

r©
o
S
=
o -

Year/Quarter

6. (15%) Building Contracts. The values of Alabama building contracts (in $ millions) for a 12-month
period follow: 240 350 230 260 280 320 220 310 240 310 240 230

(a) (10%) Fill in the blanks in the following table where MA3 is the three-month moving average,
ES0.2 is the exponential smoothing forecast using o = 0.2. (5tEZEAZMERD (1)~(4) BIT] - &
BstEBE)(FRFM |P.Error| & absolute value of percentage error.)

(b) (5%) Which approach provides more accurate forecasts based on MSE?
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o n - 2. BIBIREERNE  HE— R REE
AidBEH4E - BRI E: 50 % 2| 3 | FHTRESE | B mARBKIORESR . BT

=113

T8 | RE | £

p=1113

it IRBEEE! (BB §14~§18) | O | x | x | x <
t Revenue MA3  |Error| (Error)® |P.Error| ES0.2 |Error| (Error)®> |P.Error|
1 240
2 350 240.00 110.00  12100.00 31.43
3 230 273.33 43.33 1877.78 18.84 262.00 32.00 1024.00 13.91
4 260 280.00 20.00 400.00 7.69 255.60 4.40 19.36 1.69
5 280 256.67 23.33 544.44 8.33 256.48 23.52 553.19 8.40
6 320 (1) 3333 111111 (2) (3) 5882  3450.32 18.38
7 220 273.33 53.33 2844.44 24.24 (4) 52.95 2803.41 24.07
8 310 283.33 26.67 711.11 8.60 262.36 47.64 2269.78 15.37
9 240 256.67 16.67 277.78 6.94 271.89 31.89 1016.73 13.29
10 310 286.67 23.33 544.44 7.53 265.51 44.49 1979.45 14.35
11 240 263.33 23.33 544.44 9.72 274.41 34.41 1183.85 14.34
12 230 260.00 30.00 900.00 13.04 267.53 37.53 1408.18 16.32
Total 3230 | 2720.00 293.33 9755.56 115.36 | 2889.90 477.64  27817.28 171.54

7. (20%, 5% each) Prices of Brands of Refrigerators. Twelve homemakers were asked to estimate
the retail selling price of two models of refrigerators. Their estimates of selling price are shown in the
following table. Use these data and test at the 0.05 level of significance to determine whether there is

a difference between the two models in terms of homemakers’ perceptions of selling price.

Which statistical test can be used here? What is the Hy?

What is the value of the test statistic?

Homemaker Model 1 Model 2 Difference

1 850 1100 -250
2 960 920 40
3 940 890 50
4 900 1050 -150
5 790 1120 -330
6 820 1000 -180
7 900 1090 -190
8 890 1120 -230
9 1100 1200 -100
10 700 890 -190
11 810 900 -90
12 920 900 20

E3/48




BIVZECERE 111 BFEESE 2 28 Hik=Z =il
2588 FETE (D) BiRIERl . METERESHR wEnE 2R
ZHHE 6 B 13 H () 13:10-14:50 xEBIBERTT "0, BAIFT "x g 1. BB SRS B NS -
— 2. BEBERGENE  HAE—RREED
ABEH4E - BRI E: 50 % HE | BA | SR | FH | FRTRES | R MERKIRER . B
B FREIEESR! (#HE: §14~§18) 0 x | x| x X
BExR
Upper tail probability p.
( P z l(28) t(29) X%7) X%g) Foony Faan
1 0.200 0.8416 0.8551 0.8546 0.8542 9.8032 12.2421 1.7093 1.6558
2 0.100 1.2816 1.3137 1.3125 1.3114 12.0170 14.6837 2.5106 2.2987
3 0.050 1.6449 1.7033 1.7011 1.6991 14.0671 16.9190 3.3541 2.9604
4 0.025 1.9600 2.0518 2.0484 2.0452 16.0128 19.0228 4.2421 3.6472
5 0.010 2.3263 2.4727 24671 2.4620 18.4753 21.6660 5.4881 4.6009
6 0.005 25758 2.7707 2.7633 2.7564 20.2777 23.5894 6.4885 5.3611
pnorm

pnorm(2.25) = 0.9877755, pnorm(2.35) = 0.9906133, pnorm(2.45) = 0.9928572, pnorm(2.55) =
0.9946139, pnorm(2.65) = 0.9959754, pnorm(2.75) = 0.9970202.

(A%

Mean: p = np = 0.5n, Standard deviation: o = \/np(1 — p) = v/0.25n

o Mean: pup+ = "(”4“)7 Standard deviation: op+ = w/%, Distribution Form: Approximately

normal for n > 10.

o Mean: py = (1/2)n1(n1 +ng+1), Standard deviation: oy = \/(1/12)n1na(n1 + ne + 1) Distribution
form: Approximately normal provided n; > 7 and no > 7.
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“Your efforts will always be neglected no matter how hard you try; so fight for yourself.”
— EZ8FE (Emergency Declaration, 2022)



