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11.1 Regression Models with.Binary Response Vari-
able∗

11.2 Sigmoidal Response Functions for Binary Re-
sponses∗

11.3 Simple Logistic Regression
1. If X is a random variable with Bernoulli distribution , then

P (X = 1) = π = 1− P (X = 0)

and the probability mass function of this distribution

fX(k, p) = πk(1− π)1−k, k ∈ {0, 1} .

2. The logit is the logarithm of the odds ratio , where p = probability of a positive
outcome (e.g., survived Titanic sinking)

logit(p) = log
(

p

1− p

)
.

3. A formal statement of the simple logistic regression model : recall that when
the response variable is binary , taking on the values 1 and 0 with proba-
bilities π and 1− π , respectively, Y is a Bernoulli random variable with
parameter E{Y } = π .

(110-1) Regression Analysis (I) January 6, 2022

http://www.hmwu.idv.tw


Chapter 14: Logistic Regression Page 2/8

4. We could state the simple logistic regression model in the usual form:

Yi = E{Yi}+ εi

5. Since the distribution of the error term εi depends on the Bernoulli distribution
of the response Yi, it is preferable to state the simple logistic regression model as:
Yi are independent Bernoulli random variables with expected values:

E{Yi} = πi =
exp(β0 + β1Xi)

1 + exp(β0 + β1Xi)
. (14.20)

6. The X observations are assumed to be known constants . Alternatively, if the
X observations are random, E{Yi} is viewed as a conditional mean , given the
value of Xi.

Likelihood Function

1. Since each Yi observation is an ordinary Bernoulli random variable, where:

P (Yj = 1) = πi; P (Yj = 0) = 1− πi; i = 1, · · · , n.

we can represent its probability distribution as follows:

fi(Yi) = πYi
i (1− πi)

1−Yi , Yi = 0, 1; i = 1, · · · , n. (14.21)

Note that fi(1) = πi and fi(0) = 1− πi . Hence, fi(Yi) simply represents
the probability that Yi = 1 or 0.

2. Since the Yi observations are independent, their joint probability function is:

g(Y1, · · · , Yn) =
n∏

i=1

fi(Yi) =
n∏

i=1

πYi
i (1− πi)

1−Yi . (14.22)

3. Find the maximum likelihood estimates by working with the logarithm of the joint
probability function:

ln g(Y1, · · · , Yn) = ln
n∏

i=1

fi(Yi)

=
n∑

i=1

[Yi ln πi + (1− Yi) ln(1− πi)]

=
n∑

i=1

[
Yi ln

(
πi

1− πi

)]
+

n∑
i=1

ln(1− πi) .
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4. Since E{Yi} = πi; for a binary variable, it follows from (14.20) that:

1− πi = [1 + exp(β0 + β1Xi)]
−1 (14.24)

5. Furthermore, from (14.l8a), we obtain:

ln
(

πi

1− πi

)
= β0 + β1Xi (14.25)

6. Hence, log likelihood (14.23) can be expressed as follows:

lnL(β0, β1) =
n∑

i=1

Yi(β0 + β1Xi)−
n∑

i=1

ln[1 + exp(β0 + β1Xi)] (14.26)

where L(β0, β1) replaces g(Y1, · · · , Yn) to show explicitly that we now view this
function as the likelihood function of the parameters to be estimated, given the
sample observations.

Maximum Likelihood Estimation

1. The maximum likelihood estimates of β0 and β1 in the simple logistic regression
model are those values of β0 and β1 that maximize the log-likelihood function
in (14.26).

2. No closed-form solution exists for the values of β0 and β1, in 04.26) that max-
imize the log-likelihood function. Computer-intensive numerical search procedures
are therefore required to find the maximum likelihood estimates b0 and b1.

3. Once the maximum likelihood estimates b0 and b1 are found, we substitute these
values into the response function in (14.20) to obtain the fitted response function.
We shall use πi to denote the fitted value for the ith case:

π̂i =
exp(b0 + b1Xi)

1 + exp(b0 + b1Xi)
.

4. The fitted logistic response function is as follows:

π̂ =
exp(b0 + b1X)

1 + exp(b0 + b1X)

5. If we utilize the logit transformation in (14.18), we can express the fitted response
function in (14.28) as follows:

π̂
′
= b0 + b1X , π̂

′
= ln

(
π̂

1− π̂

)
(14.29)

We call (14.29) the fitted logit response function .
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6. Once the fitted logistic response function has been obtained, the usual next steps
are to examine the appropriateness of the fitted response function and, if the
fit is good, to make a variety of inferences and predictions .

7. We shall postpone a discussion of how to examine the goodness of fit of a logistic
response function and how to make inferences and predictions until we have consid-
ered the multiple logistic regression model with a number of predictor variables.

Example

1. A systems analyst studied the effect of computer programming experience on ability
to complete within a specified time a complex programming task, including debug-
ging. Twenty-five persons were selected for the study. They had varying amounts
of programming experience (measured in months of experience), as shown in Table
14.1a column 1.

2. All persons were given the same programming task, and the results of their success
in the task are shown in column 2. The results are coded in binary fashion: Y = 1

if the task was completed successfully in the allotted time, and Y = 0 if the task
was not complete d successfully.
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3. (Figure 14.5) contains a scatter plot of the data. This plot is not too informative
because of the nature of the response variable, other than to indicate that ability
to complete the task successfully appears to increase with amount of experience.
A lowess nonparametric response curve was fitted to the data and is also shown in
Figure 14.5.

4. A sigmoidal S-shaped response function is clearly suggested by the nonparametric
lowess fit. It was therefore decided to fit the logistic regression model

(14.20).

5. A standard logistic regression package was run on the data. The results are con-
tained in Table 14.1b. Since b0 = −3.0597 and b1 = 0.1615 , the estimated
logistic regression function:

π̂ =
exp(−3.0597 + 0.1615X)

1 + exp(−3.0597 + 0.1615X)
.

6. This fitted value is the estimated probability that a person with 14 months experi-
ence (X1 = 14) will successfully complete the programming task.

7. In addition to the lowess fit, Figure 14.5 also contains a plot of the fitted logistic
response function, π̂(x) .
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Interpretation of b1

1. The interpretation of the estimated regression coefficient b1 in the fitted logistic
response function (14.30) is not the straightforward interpretation of the slope
in a linear regression model.

2. The reason is that the effect of a unit increase in X varies for the logistic regression
model according to the location of the starting point on the X scale.

3. An interpretation of b1 is found in the property of the fitted logistic function that the
estimated odds π̂/(1− π̂) are multiplied by exp(b1) for any unit increase
in X.

(a) Consider the value of the fitted logit response function (14.29) at X = Xj:

π̂
′
(Xj) = b0 + b1Xj .

The notation π̂
′
(Xj) indicates specifically the X level associated with the fitted

value.

(b) We also consider the value of the fitted logit response function at X = Xj + 1 :
The difference between the two fitted values is simply:

π̂
′
(Xj + 1)− π̂

′
(Xj) = b1 .

(c) Now according to (14.29a), π̂′
(Xj) is the logarithm of the estimated odds when

X = Xj; we shall denote it by loge(odds1). Similarly, π̂′
(Xj+1) is the logarithm

of the estimated odds when X = Xj + 1; we shall denote it by loge(odds2).

π̂
′
(Xj) = loge(odds1) = ln

(
ˆπ(Xj)

1− ˆπ(Xj)

)
= b0 + b1Xj .

(d) Hence, the difference between the two fitted logit response values can be ex-
pressed as follows:

loge(odds2)− loge(odds1) = loge

odds2
odds1

= b1

(e) Taking antilogs of each side, we see that the estimated ratio of the odds,
called the odds ratio and denoted by ÔR, equals exp(b1) :

ÔR = odds2

odds1
= exp(b1) (14.31)
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4.
�� ��Example The programming task example.

(a) We see from Figure 14.5 that the probability of success increases sharply
with experience.

(b) Specifically, Table 14.1b shows that the odds ratio is

ÔR = exp(b1) = exp(0.1615) = 1.175,

so that the odds of completing the task increase by 17.5 percent with
each additional month of experience.

(c) Since a unit increase of one month is quite small, the estimated odds ratio of
1.175 may not adequately show the change in odds for a longer difference in
time. In general, the estimated odds ratio when there is a difference of c units
of X is exp(cb1) .

(d) For example, should we wish to compare individuals with relatively little ex-
perience to those with extensive experience, say 10 months versus 25 months
so that c = 15, then the odds ratio would be estimated to be exp[15(0.1615)] =
11.3. This indicates that the odds of completing the task increase over 11-fold
for experienced persons compared to relatively inexperienced persons.

Supplementary

1. The 6 Assumptions of Logistic Regression

(a) The response variable is binary .

(b) The observations are independent .

(c) There is no multicollinearity among explanatory variables.

(d) There are no extreme outliers .

(e) There is a linear relationship between explanatory variables and the logit of the response
Variable.

(f) The sample size is sufficiently large .

2. Assumptions of Logistic Regression vs. Linear Regression: In contrast to linear
regression, logistic regression does not require:
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(a) A linear relationship between the explanatory variable(s) and the response
variable.

(b) The residuals of the model to be normally distributed.

(c) The residuals to have constant variance , also known as homoscedasticity .
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