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9.1 Overview of Model-Building Process
A strategy for the building of a regression model:

1. Data collection and preparation

2. Reduction of explanatory or predictor variables (for exploratory observational
studies)

3. Model refinement and selection

4. Model validation
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9.2 Surgical Unit Example
1. A hospital surgical unit was interested in predicting survival in patients undergoing

a particular type of liver operation. A random selection of 108 patients was available
for analysis. From each patient record, the following information was extracted from
the pre-operation evaluation:

X1 blood clotting score (血栓分數)
X2 prognostic index (預後指數)
X3 enzyme function test score (酶功能)
X4 liver function test score (肝功能)
X5 age, in years
X6 indicator variable for gender (0 = male, 1 =female)
X7, X8 indicator variables for history of alcohol use:

None: X7 = 0, X8 = 0, Moderate: X7 = 1, X8 = 0,Severe:X7 = 0, X8 = 1

2. These constitute the pool of potential explanatory or predictor variables for a
predictive regression model.

3. (Table 9.1) The response variable Y is survival time , which was ascertained
in a follow-up study. A portion of the data on the potential predictor variables
and the response variable is presented in Table 9.1. These data have already been

screened and properly edited for errors.

4. To illustrate the model-building procedures discussed in this and the next section,
we will use only the first four explanatory variables. We will also use only the first
54 of the 108 patients.
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5. Since the pool of predictor variables is small, a reasonably full exploration of
relationships and of possible strong interaction effects is possible at this stage of
data preparation.

(a) Stem-and-leaf plots for each of the predictor variables (not shown). These high-
lighted several cases as outlying with respect to the explanatory variables.
The investigator was thereby alerted to examine later the influence of
these cases.

(b) A scatter plot matrix and the correlation matrix (not shown)

6. A first-order regression model based on all predictor variables was fitted to serve as
a starting point.

(a) (Figure 9.2a) A plot of residuals against predicted values suggests that both
curvature and nonconstant error variance are apparent.

(b) (Figure 9.2b) the normal probability plot suggests some departure from
normality.
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7. Transformation: To make the distribution of the error terms more nearly normal
and to see if the same transformation would also reduce the apparent curvature, the
investigator examined the logarithmic transformation Y ′ = ln(Y ) .

(a) (Figure 9.2c) A plot of residuals against fitted values when Y ′ is regressed on
all four predictor variables in a first-order model;

(b) (Figure 9.2d) The normal probability plot of residuals for the transformed data
shows that the distribution of the error terms is more nearly normal .

8. (Figure 9.3) A scatter plot matrix and the correlation matrix with the transformed
Y variable.
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(a) Each of the predictor variables is linearly associated with Y ′, with X3

and X4 showing the highest degrees of association and X1 the lowest.

(b) Show inter-correlations among the potential predictor variables. In par-
ticular, X4 has moderately high pairwise correlations with X1, X2, and X3

9. Various scatter and residual plots were obtained (not shown here).

10. On the basis of these analyses, the investigator concluded to use, at this stage of
the model-building process, Y ′ = ln(Y ) as the response variable, to represent
the predictor variables in linear terms, and not to include any interaction terms.

11. The next stage is to examine whether all of the potential predictor variables
are needed or whether a subset of them is adequate.

9.3 Criteria for Model Selection
1. From any set of p− 1 predictors, 2p−1 alternative models can be con-

structed. This calculation is based on the fact that each predictor can be either
included or excluded from the model.

2. (Table 9.2) the 24 = 16 different possible subset models that can be formed
from the pool of four X variables in The Surgical Unit Example.
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3. Model selection procedures, also known as subset selection or variables selection
procedures, have been developed to identify a small group of regression models that
are ”good” according to a specified criterion.

4. While many criteria for comparing the regression models have been developed, we
will focus on six: R2

p, R2
a,p, Cp, AICp, SBCp and PRESSp .

5. We shall denote the number of potential X variables in the pool by P − 1 .
We assume throughout this chapter that all regression models contain an intercept
term β0 . Hence, the regression function containing all potential X variables
contains P parameters, and the function with no X variables contains one
parameter (β0).

6. The number of X variables in a subset will be denoted by p− 1 , as always,
so that there are p parameters in the regression function for this subset of X
variables. Thus, we have: 1 ≤ p ≤ P .

7. We will assume that the number of observations exceeds the maximum number of
potential parameters: n > p .

R2
p or SSEp Criterion

1. R2
p criterion calls for the use of the coefficient of multiple determination R2 :

R2
p = 1− SSEp

SSTO

2. R2
p indicates that there are p parameters, or (p− 1) X variables, in the regres-

sion function on which R2
p is based.

3. The R2
p criterion is equivalent to using the error sum of squares SSEp as the

criterion (we again show the number of parameters in the regression model as a
subscript).

4. The R2
p criterion is not intended to identify the subsets that maximize this criterion.

5. We know that R2
p can never decrease as additional X variables are included in

the model. Hence, R2
p will be a maximum when all (P − 1) potential X

variables are included in the regression model.
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6. The intent in using the R2
p criterion is to find the point where adding more X

variables is not worthwhile because it leads to a very small increase in R2
p

.

7.
�� ��Example The Surgical Unit Example

(a) (Table 9.2, column 3) the R2
p values were obtained from a series of computer

runs.

(b) For instance, when X4 is the only X variable in the regression model, we
obtain:

R2
2 = 1− SSE(X4)

SSTO
= 1− 7.409

12.808
= 0.422

Note that SSTO = SSE1 = 12.808

(c) (Figure 9.4a) a plot of the R2
p values against p, the number of parameters in

the regression model.
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(d) The maximum R2
p value for the possible subsets each consisting of p − 1 pre-

dictor variables, denoted by max(Rp) , appears at the top of the graph
for each p. These points are connected by solid lines to show the impact of

adding additional X variables .

(e) (Figure 9.4a) little increase in max(Rp) takes place after three X variables are
included in the model.

(f) Hence, consideration of the subsets (X1, X2, X3) for which R2
4 = 0.757 (as

shown in column 3 of Table 9.2) and (X2, X3, X4) for which R2
4 = 0.718

appears to be reasonable according to the R2
p criterion.

(g) Note that variables X3 and X4, correlate most highly with the response
variable, yet this pair does not appear together in the max(R2

p) model for p = 4.

R2
a,p or MSEp Criterion

1. Since R2
p does not take account of the number of parameters in the regression

model and since max(R2
p) can never decrease as p increases, the adjusted coefficient

of multiple determination R2
a,p in (6.42) has been suggested as an alternative crite-

rion:

R2
a,p = 1−

(
n− 1

n− p

)
SSEp

SSTO
= 1− MSEp

SSTO/(n− 1)
(9.4)

2. It can be seeg from (9.4) that R2
a,p increases if and only if MSEp decreases

since SSTO/(n− 1) is fixed for the given Y observations. Hence, R2
a,p and MSEp

provide equivalent information.

3. The largest R2
a,p for a given number of parameters in the model, max(R2

a,p), can,
indeed, decrease as p increases .

4. Find a few subsets for which R2
a,p is at the maximum or so close to the

maximum that adding more variables is not worthwhile.

5.
�� ��Example The Surgical Unit Example

(a) (Table 9.2, column 4). For instance, we have for the regression model contain-
ing only X4:

R2
a,2 = 1−

(
n− 1

n− 2

)
SSE(X4)

SSTO
= 1−

(
53

52

)
7.409

12.808
= 0.410
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(b) (Figure 9.4b) The story told by the R2
a,p plot in Figure 9.4b is very similar

to that told by the R2
p plot in Figure 9.4a.

(c) Consideration of the subsets (X1, X2, X3) and (X2, X3, X4) appears
to be reasonable according to the R2

a,p criterion.

(d) Notice that R2
a,4 = 0.743 is maximized for subset (X1, X2, X3) , and

that adding X4 to this subset − thus using all four predictors − decreases
the criterion slightly: R2

a,5 = 0.740 .

Mallows’ Cp Criterion∗

AICp and SBCp Criteria

1. Two popular alternatives that also provide penalties for adding predictors are Akaike’s
(赤池) information criterion (AICp) and Schwarz’ Bayesian criterion (SBCp) .

2. We search for models that have small values of AICp, or SBCp:

AICp = n lnSSEp − n lnn+ 2p (9.14)

SBCp = n lnSSEp − n lnn+ (lnn)p (9.15)

3. Notice that for both of these measures, the first term is n lnSSEp which decreases
as p increases , The second term is fixed (for a given sample size n), and
the third term increases with the number of parameters, p .

4. Models with small SSEp will do well by these criteria as long as the penalties
− 2p for AICp and (lnn)p for SBCp − are not too large .

5. If n ≥ 8 the penalty for SBCp is larger than that for AICp.

6.
�� ��Example The Surgical Unit Example

(a) (Table 9.2, columns 6 and 7) When X4 is the only X variable in the regression
model:

AIC2 = n lnSSE2 − n lnn+ 2p

= 54 ln 7.409− 54 ln 54 + 2(2) = −103.262

SBC2 = n lnSSE2 − n lnn+ (lnn)p

= 54 ln 7.409− 54 ln 54 + (ln 54)(2) = −99.284
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(b) (Figures 9.4d, e) both of AICp and SBCp criteria are minimized for subset
(X1, X2, X3) .

PRESSp Criterion

1. The PRESSp (prediction sum of squares) criterion is a measure of how well
the use of the fitted values for a subset model can predict the observed

responses Yi . The error sum of squares, SSE =
∑

(Yi − Ŷi)
2 , is also such

a measure.

2. The PRESS measure differs from SSE in that each fitted value Yi for the PRESS

criterion is obtained by deleting the ith case from the data set, estimating the
regression function for the subset model from the remaining n− 1 cases , and
then using the fitted regression function to obtain the predicted value Ŷi(i) for
the ith case.

3. We use the notation Ŷi(i) now for the fitted value to indicate, by the first
subscript i, that it is a predicted value for the ith case and, by the second
subscript (i), that the ith case was omitted when the regression function was
fitted.

4. The PRESS prediction error for the ith case then is:

Yi − Ŷi(i) (9.16)

and the PRESSp criterion is the sum of the squared prediction errors over all n
cases:

PRESSp =
n∑

i=1

(Yi − Ŷi(i))
2 (9.17)

5. Models with small PRESSp values are considered good candidate models.
The reason is that when the prediction errors Yi− Ŷi(i) are small, so are the squared
prediction errors and the sum of the squared prediction errors.

6.
�� ��Example The Surgical Unit Example

(a) (Table 9.2, column 8)(Figure 9.4f) The message given by the PRESSp values
in Table 9.2 and plot in Figure 9.4f is very similar to that told by the
other criteria.
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(b) We find that subsets (X1, X2, X3) and (X2, X3, X4) have small PRESS

values;

(c) The set of all X variables (X1, X2, X3, X4) involves a slightly larger PRESS

value than subset (X1, X2, X3).

(d) The subset (X2, X3, X4) involves a PRESS value of 4.597, which is moderately
larger than the PRESS value of 3.914 for subset (X1, X2, X3).

9.4 Automatic Search Procedures for Model Selec-
tion

1. The number of possible models, 2p−1 , grows rapidly with the number of pre-
dictors.

2. A variety of automatic computer-search procedures have been developed, e.g.,
”best” subsets regression and stepwise regression.

”Best” Subsets Algorithms

1. Time-saving algorithms require the calculation of only a small fraction of all
possible regression models.

2. For instance, the algorithms search for the five best subsets of X variables with
the smallest Cp values using much less computational effort than when all possible
subsets are evaluated. These algorithms are called ”best” subsets algorithms .

3. When the pool of potential X variables is very large, say greater than 30 or 40, even
the ”best” subset algorithms may require excessive computer time .

4. As previously emphasized, our objective at this stage is not to identify a single best
model ; we hope to identify a small set of promising models for further

study.

5.
�� ��Example The Surgical Unit Example (eight predictors), we know there are 28 = 256

possible models.
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(a) (Figure 9.5) Plots of the six model selection criteria. The best values of each
criterion for each p have been connected with solid lines.

(b) (Table 9.3) The overall optimum criterion values have been underlined in
each column of the table.

(c) For example

i. a 7-or 8-parameter model is identified as best by the R2
a,p criterion (both

have max(R2
a,p) = 0.823 )

ii. a 6-parameter model is identified by the Cp criterion ( min(C7) = 5.541 ),

iii. a 7-parameter model is identified by the AICp criterion ( min(AIC7) = −163.834 ).
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iv. Both the SBCp and PRESSp criteria point to 5-parameter models
( min(SBC5) = −153.406 and min(PRESS5) = 2.738 ).

(d) (Figure 9.6) MINITAB output for the ”best” subsets algorithm. We specified
that the best two subsets be identified for each number of variables in
the regression model.

(e) The MINITAB algolithm uses the R2
p

criterion, but also shows for each
of the ”best” subsets the R2

a,p, Cp, and
√

MSEp (labeled S) values. The right-
most columns of the tabulation show the X variables in the subset.

(f) According to the R2
a,p criterion, the 7-parameter model based on all predictors

except Liver (X4) and Histmod (history of moderate alcohol use
X7), or the 8-parameter model based on all predictors except Liver (X4)
are best.

(g) The R2
a,p criterion value for both of these models is 0.823 .

6. The all-possible-regressions procedure leads to the identification of a small
number of subsets that are ”good” according to a specified criterion.

7. Consequently, one may wish at times to consider more than one criterion in
evaluating possible subsets of X variables.
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8. Once the investigator has identified a few ”good” subsets for intensive examina-
tion, a final choice of the model variables must be made. This choice is aided by

residual analyses (and other diagnostics to be covered in Chapter 10)
and by the investigator’s knowledge of the subject under study, and is finally
confirmed through model validation studies.

Stepwise Regression Methods

1. When the pool of potential X variables contains 30 to 40 or even more variables,
use of a ”best” subsets algorithm may not be feasible .

2. An automatic search procedure that develops the ”best” subset of X vari-
ables sequentially may then be helpful. The forward stepwise regression
procedure is probably the most widely used of the automatic search methods.

3. Essentially, the forward stepwise search method develops a sequence of regression
models , at each step adding or deleting an X variable. The cri-

terion for adding or deleting an X variable can be stated equivalently in terms of
error sum of squares reduction , coefficient of partial correlation, t∗ statis-

tic, or F ∗ statistic.

4. An essential difference between stepwise procedures and the ”best” subsets algo-
rithm is that stepwise search procedures end with the identification of a single
regression model as ”best.” With the ”best” subsets algorithm, several regres-
sion models can be identified as ”good” for final consideration.

Forward Stepwise Regression

We shall describe the forward stepwise regression search algorithm in terms of the t∗ statistics
(2.17) and their associated P -values for the usual tests of regression parameters.

1. The stepwise regression routine first fits a simple linear regression model for
each of the p − 1 potential X variables. For each SLR model, the t∗ statistic for
testing whether or not the slope is zero is obtained:

t∗k =
bk

s{bk}
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(a) The X with the largest t∗ value is the candidate for first addition .
If this t∗ value exceeds a predetermined level , or if the corresponding
P -value is less than a predetermined α, the X variable is added .

(b) Otherwise, the program terminates with no X variable considered suffi-
ciently helpful to enter the regression model.

2. Assume X7 is the variable entered at step 1. The stepwise regression routine now
fits all regression models with two X variables , where X7 is one of the pair.

(a) For each such regression model, the t∗ test statistic corresponding to the
newly added predictor Xk is obtained.

(b) This is the statistic for testing whether or not βk = 0 when X7 and Xk

are the variables in the model.

(c) The X variable with the largest t∗ value-or equivalently, the smallest P -value is
the candidate for addition at the second stage.

(d) If this t∗ value exceeds a predetermined level (i.e., the P -value falls below a
predetermined level), the second X variable is added . Otherwise, the
program terminates.

3. Suppose X3 is added at the second stage. Now the stepwise regression routine
examines whether any of the other X variables already in the model should
be dropped .

(a) There is at this stage only one other X variable in the model, X7 , so that only
one t∗ test statistic is obtained:

t∗7 =
b7

s{b7}

(b) At later stages, there would be a number of these t∗ statistics, one for each of
the variables in the model besides the one last added .

(c) The variable for which this t∗ value is smallest (or equivalently the vari-
able for which the P -value is largest) is the candidate for deletion .

(d) If this t∗ value falls below-or the P -value exceeds-a predetermined limit, the
variable is dropped from the model; otherwise, it is retained .
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4. Suppose X7 is retained so that both X3 and X7 are now in the model.

(a) The stepwise regression routine now examines which X variable is the next
candidate for addition .

(b) Then examines whether any of the variables already in the model should
now be dropped.

(c) And so on until no further X variables can either be added or deleted, at which
point the search terminates .

5. Note that the stepwise regression algorithm allows an X variable, brought into the
model at an earlier stage, to be dropped subsequently if it is no longer helpful
in conjunction with variables added at later stages.

Example

(Figure 9.7) MINITAB computer printout for the forward stepwise regression procedure
for The Surgical Unit Example. The maximum acceptable a limit for adding a
variable is 0.10 and the minimum acceptable a limit for removing a variable is 0.15.
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1. At the start of the stepwise search, no X variable is in the model so that the
model to be fitted is Yi = β0 + ϵi;.

(a) (Step 1), the t∗ statistics and corresponding P -values are calculated for
each potential X variable, and the predictor having the smallest P -value
( largest t∗ value ) is chosen to enter the equation.

(b) Enzyme (X3) had the largest test statistic:

t∗3 =
b3

s{b3}
=

0.015124

0.002427
= 6.23 .

(c) The P -value for this test statistic is 0.000 , which falls below the maximum
acceptable α-to-enter value of 0.10; hence Enzyme (X3) is added to the model.

(d) The current regression model contains Enzyme (X3), ”Step 1”: the regression
coefficient for Enzyme (0.0151).

(e) At the bottom of column 1, a number of variables-selection criteria, including
R2

1(42.76), R2
a,1(41.66), and C1(117.4) are also provided.

2. Next, all regression models containing X3 and another X variable are fitted,
and the t∗ statistics calculated:

t∗k =

√
MSR(Xk|X3)

MSE(X3, Xk)
, since F ∗ =

MSR

MSE
, F ∗ = (t∗)2

Progindex (X2) has the highest t∗ value, and its P -value (0.000) falls below 0.10, so
that X2 now enters the model.

3. Enzyme and Progindex (X3 and X2) are now in the model. At this point, a
test whether Enzyme (X3) should be dropped is undertaken, but because
the P -value (0.000) corresponding to X3 is not above 0.15, this variable is

retained .

4. Next, all regression models containing X2, X3, and one of the remaining potential
X variables are fitted. The appropriate t∗ statistics:

t∗k =

√
MSR(Xk|X2, X3)

MSE(X2, X3, Xk

The predictor labeled Histheavy (X8) had the largest t∗ value, (P -value = 0.000)
and was next added to the model. X2, X3 , and X8 are now in the model.
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5. Next, a test is undertaken to determine whether X2 or X3 should be dropped .
Since both of the corresponding P -values are less than 0.15, neither predictor is
dropped from the model.

6. (Step 4) Bloodclot (X1) is added, and no terms previously included were dropped.
The right-most column of Figure 9.7 summarizes the addition of variable X1 into
the model containing variables X2, X3, and X8.

7. Next, a test is undertaken to determine whether either X2 , X3 , or X8 should
be dropped. Since all P -values are less than 0.15 (all are 0.0(0), all variables are
retained.

8. Finally, the stepwise regression routine considers adding one of X4 , X5 , X6 , or X7

to the model containing X1, X2, X3, and X8. In each case, the P -values are greater
than 0.10 (not shown); therefore, no additional variables can be added to the model
and the search process is terminated.

9. Thus, the stepwise search algorithm identifies (X1, X2, X3, X8) as the ”best”
subset of X variables. This model also happens to be the model identified by both
the SBCp and PRESSp criteria in our previous analyses based on an
assessment of ”best” subset selection.

Other Stepwise Procedures

1. Forward Selection. The forward selection search procedure is a simplified version of
forward stepwise regression, omitting the test whether a variable once entered
into the model should be dropped .

2. Backward Elimination. The backward elimination search procedure is the opposite
of forward selection.

(a) It begins with the model containing all potential X variables and identi-
fies the one with the largest P -value.

(b) If the maximum P -value is greater than a predetermined limit, that X variable
is dropped.
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(c) The model with the remaining (P − 2) X variables is then fitted, and the next
candidate for dropping is identified.

(d) This process continues until no further X variables can be dropped.

9.5 Some Final Comments on Automatic Model Se-
lection Procedures∗

9.6 Model Validation
1. The final step in the model-building process is the validation of the selected

regression models.

2. Model validation usually involves checking a candidate model against independent data .
Three basic ways of validating a regression model are:

(a) Collection of new data to check the model and its predictive ability.

(b) Comparison of results with theoretical expectations, earlier empirical re-
sults, and simulation results.

(c) Use of a holdout sample to check the model and its predictive ability .

3. What is difference between: training set, testing set and hold-out set: (The training
set is for model-building )

(a) A observed data set (100%): e.g, training set (75%), testing set (25%).

(b) A observed data set (100%): k-fold cross validation: e.g, k = 4 (25%, 25%,
25%, 25%), in turns ”testing set (25%), training set (75%)” 4 times.

(c) A observed data set (100%): hold-out set (20%), Not hold-out set (80% for
4-fold CV)

Collection of New Data to Check Model

1. The best means of model validation is through the collection of new data .
The purpose of collecting new data is to be able to examine whether the regression
model developed from the earlier data is still applicable for the new data . If
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so, one has assurance about the applicability of the model to data beyond
tho,se on which the model is based.

Methods of Checking Validity. A means of measuring the actual predictive capability
of the selected regression model is to use this model to predict each case in the new
data set and then to calculate the mean of the squared prediction errors, to be
denoted by MSPR, which stands for mean squared prediction error:

MSPR =

∑n∗

i=1(Yi − Ŷi)
2

n∗

where:

• Yi is the value of the response variable in the ith validation case .

• Ŷi is the predicted value for the ith validation case based on the model-
building dataset.

• n∗ is the number of cases in the validation data set.

2. If the mean squared prediction error MSPR is fairly close to MSE based on
the regression fit to the model-building data set , then the error mean square
MSE for the selected regression model is not seriously biased and gives an
appropriate indication of the predictive ability of the model.

3. If the mean squared prediction error is much larger than MSE , one should
rely on the mean squared prediction error as an indicator of how well the selected
regression model will predict in the future.
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