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Overview
1. The matrix approach is practically a necessity in multiple regression analysis,

since it permits extensive systems of equations and large arrays of data to be denoted
compactly and operated upon efficiently.

2. This chapter gives a brief introduction to amatrix algebra.

3. Then we apply matrix methods to the simple linear regression model.

5.1 Matrices

Definition of Matrix

1. A matrix is a rectangular array of elements arranged in rows and columns.

2. A matrix with r rows and c columns will be represented either in full:

A =



a11 a12 · · · a1j · · · a1c

a21 a22 · · · a2j · · · a2c
... ... ... ...
ai1 ai2 · · · aij · · · aic
... ... ... ...
ar1 ar2 · · · arj · · · arc
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or in abbreviated form:

A = [aij] , i = 1, · · · , r; j = 1, · · · , c

or simply by a boldface symbol, such as A.

Square Matrix

1. A matrix is said to be square if the number of rows equals the number of
columns.

Vector

1. A matrix containing only one column is called a column vector or simply a
vector.

C =



c1

c2

c3

c4

c5


the vector C is a 5× 1 matrix .

2. A matrix containing only one row is called a row vector : e.g., B′ = [15 25 50].
We use the prime symbol ( transpose ) for row vectors. Note that the row vector
B’ is a 1× 3 matrix.

Transpose

1. The transpose of a matrix A is another matrix, denoted by A ’, that is obtained
by interchanging corresponding columns and rows of the matrix A.

A =


2 5

7 10

3 4


then the transpose A’ is:

A′ =

[
2 7 3

5 10 4

]
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2. The transpose of a column vector is a row vector, and vice versa. This is the reason
why we used the symbol B’ earlier to identify a row vector, since it may be thought
of as the transpose of a column vector B. In general, we have:

A = [aij], A′ = [aji]

Equality of Matrices

1. Two matrices A and B are said to be equal if they have the same dimension and if
all corresponding elements are equal .

Regression Examples

1. In regression analysis, one basic matrix is the vector Y, consisting of the n obser-
vations on response variable

Y =


Y1

Y2

...
Yn



2. Another basic matrix in regression analysis is the X matrix, which is defined as
follows for simple linear regression analysis:

X =


1 X1

1 X2

... ...
1 Xn


The matrix X consists of a column of 1s and a column containing the n observations
on the predictor variable X. The X matrix is often referred to as the design matrix.

5.2 Matrix Addition and Subtraction
1. Adding or subtracting two matrices requires that they have the same dimension.

The sum, or difference, of two matrices is another matrix whose elements each
consist of the sum, or difference, of the corresponding elements of the two matrices.
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2.

if Ar×c = [aij], Br×c = [bij], then A ± B = [aij]± [bij]

3. The regression model: Yi = E(Yi) + εi, i = 1, · · · , n can be written in matrix
notation:

Y = E(Y) + ε

4. The observations vector Y equals the sum of two vectors, a vector containing the
expected values and another containing the error terms.

Y1

Y2

...
Yn

 =


E(Y1)

E(Y2)
...

E(Yn)

+


ε1

ε2
...
εn

 =


E(Y1) + ε1

E(Y2) + ε2
...

E(Yn) + εn


5.3 Matrix Multiplication

Multiplication of a Matrix by a Scalar

1. A scalar is an ordinary number or a symbol representing a number. In multiplication
of a matrix by a scalar, every element of the matrix is multiplied by the scalar.

2. If A = [aij] and k is the scalar, then

kA = Ak = [kaij]

Multiplication of a Matrix by a Matrix

1. In general, the product AB is defined only when the number of columns in A
equals the number of rows in B so that there will be corresponding terms in the

cross products .

2. Note that the dimension of the product AB is given by the number of rows in A
and the number of columns in B. Note also that in the second case the product BA
would not be defined since the number of columns in B is not equal to the number
of rows in A.
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3. In general, if A = [aik] has dimension r × c and B = [bkj] has dimension c× s, the
product AB is a matrix of dimension r × s whose element in the ith row and jth
column is:

AB =

[
c∑

k=1

aikbkj

]

Regression Examples

1. A product frequently needed is Y’Y, where Y is the vector of observations on the
response variable

Y′Y = [Y1 Y2 · · · Yn]


Y1

Y2

...
Yn

 = Y 2
1 + Y 2

2 + · · ·+ Y 2
n

=
∑n

i=1 Y
2
i

2. X’X is a 2× 2 matrix:

X′X =

[
1 1 · · · 1

X1 X2 · · · Xn

]
1 X1

1 X2

... ...
1 Xn

 =

[
n

∑
Xi∑

Xi

∑
X2

i

]

3. X’Y is a 2× 1 matrix:

X′Y =

[
1 1 · · · 1

X1 X2 · · · Xn

]
Y1

Y2

...
Yn

 =

[ ∑
Yi∑

XiYi

]

5.4 Special Types of Matrices
Certain special types of matrices arise regularly in regression analysis. We consider the
most important of these.

Symmetric Matrix

1. If A = A′ , A is said to be symmetric.
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2. A symmetric matrix necessarily is square .

3. Symmetric matrices arise typically in regression analysis when we premultiply a
matrix, say, X, by its transpose, X’. The resulting matrix, X′X , is symmetric.

Diagonal Matrix

1. A diagonal matrix is a square matrix whose off-diagonal elements are all
zeros .

2. We will often not show all zeros for a diagonal matrix, presenting it in the form:

B =


4

1

10

5


3. Identity Matrix The identity matrix or unit matrix is denoted by I . It

is a diagonal matrix whose elements on the main diagonal are all 1s.

4. Premultiplying or postmultlying any r × r matrix A by the r × r identity matrix I
leaves A unchanged.

AI = IA = A

5. A scalar matrix is a diagonal matrix whose main-diagonal elements are the
same . A scalar matrix can be expressed as kI , where k is the scalar.

6. Multiplying an r× r matrix A by the r× r scalar matrix kI is equivalent to multi-
plying A by the scalar k.

Vector and Matrix with All Elements Unity

1. A column vector with all elements 1 will be denoted by 1 and a square matrix
with all elements 1 will be denoted by J .
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2. Note that for an n× 1 vector 1 we obtain:

1′1 = [1 1 · · · 1]


1

1
...
1

 = n

and

11′ =


1

1
...
1

 [1 1 · · · 1] =


1 · · · 1
... ...
1 · · · 1

 = Jn×n

Zero Vector

1. A zero vector is a vector containing only zeros. The zero column vector will be
denoted by 0 .

5.5 Linear Dependence and Rank of Matrix

Linear Dependence

1. Consider the following matrix:

A =


1 2 5 1

2 2 10 6

3 415 1


We view A as being made up of four column vectors. Note that the third column
vector is a multiple of the first column vector.

5

10

15

 = 5


1

2

3


We say that the columns of A are linearly dependent . They contain redundant
information, since one column can be obtained as a linear combination of the others.
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2. We define the set of c column vectors C1, · · · ,Cc in an r × c matrix to be linearly
dependent if one vector can be expressed as a linear combination of the others.
If no vector in the set can be so expressed, we define the set of vectors to be

linearly independent .

3. When c scalars k1, · · · , kc, not all zero, can be found such that:

klC1 + k2C2 + · · ·+ kcCc = 0

where 0 denotes the zero column vector, the c column vectors are linearly dependent .
If the only set of scalars for which the equality holds is k1 = 0, · · · , kc = 0, the set
of c column vectors is linearly independent .

4. For our example, k1 = 5, k2 = 0, k3 = −1, k4 = 0 leads to:

5


1

2

3

+ 0


2

2

4

− 1


5

10

15

+ 0


1

6

1

 =


0

0

0


Hence, the column vectors are linearly dependent. Note that some of the kj equal
zero here. For linear dependence, it is only required that not all kj be zero.

Rank of Matrix

1. The rank of a matrix is defined to be the maximum number of linearly inde-
pendent columns in the matrix.

2. The rank of a matrix is unique and can equivalently be defined as the maximum
number of linearly independent rows.

3. It follows that the rank of an r×c matrix cannot exceed min(r, c) , the minimum
of the two values r and c.

4. When a matrix is the product of two matrices, its rank cannot exceed the smaller
of the two ranks for the matrices being multiplied. Thus, if C = AB, the rank of C
cannot exceed min(rank(A), rank(B)) .
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5.6 Inverse of a Matrix
1. In matrix algebra, the inverse of a matrix A is another matrix, denoted by A−1 ,

such that
A−1A = AA−1 = I

where I is the identity matrix.

Finding the Inverse

1. An inverse of a square r × r matrix exists if the rank of the matrix is r .
Such a matrix is said to be nonsingular or of full rank.

2. An r×r matrix with rank less than r is said to be singular or not of full rank ,
and does not have an inverse. The inverse of an r × r matrix of full rank also has
rank r.

3. Finding the inverse of a matrix can often require a large amount of computing. We
shall take the approach that the inverse of a 2× 2 matrix and a 3× 3 matrix can be
calculated by hand. For any larger matrix, one ordinarily uses a computer to find
the inverse.

4. If

A =

[
a b

c d

]
then

A−1 =

[
a b

c d

]−1

=

[
d/D −b/D

−c/D a/D

]
where D = ad− bc , D is called the determinant of the matrix A.

5. If A were singular, its determinant would equal zero and no inverse of A would
exist.

Regression Example

1. The principal inverse matrix encountered in regression analysis is the inverse of the
matrix X′X .
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� Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p191)

Find the inverse of the matrix X′X:

X′X =

[
n

∑
Xi∑

Xi

∑
X2

i

]

sol:

Uses of Inverse Matrix

1. In matrix algebra, if we have an equation:

AY = C.

We correspondingly premultiply both sides by A−1, assuming A has an inverse

A−1AY = A−1C

we obtain the solution:
Y = A−1C .

5.7 Some Basic Results for Matrices
We list here, without proof, some basic results for matrices which we will utilize in later
work.

A + B = B + A
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(A + B) + C = A + (B + C)

(AB)C = A(BC)

C(A + B) = CA + CB

k(A + B) = kA + kB

(A′)′ = A

(A + B)′ = A′ + B′

(AB)′ = B′A′

(ABC)′ = C′B′A′

(AB)−1 = B−1A−1

(ABC)−1 = C−1B−1A−1

(A−1)−1 = A

(A′)−1 = (A−1)′

5.8 Random Vectors and Matrices

Expectation of Random Vector or Matrix

1. A random vector or a random matrix contains elements that are random variables .
Thus, the observations vector Y in (5.4) is a random vector since the Yi elements
are random variables.

2. The expected value of Y is a vector, denoted by E(Y), that is defined as follows:

E(Y) = [E(Yi)] , i = 1, · · · , n.

3. For the error terms in regression model, we have

E(ε) = 0 .
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Variance-Covariance Matrix of Random Vector

1. The variance-covariance matrix of Y, denoted by σ2(Y):

σ2(Y) = E[(Y − E(Y))(Y − E(Y))′]

=



σ2(Y1) σ2(Y1, Y2) · · · σ2(Y1, Yn)

σ2(Y2, Y1) σ2(Y2) · · · σ2(Y2, Yn)
... ... ...

σ2(Yn, Y1) σ2(Yn, Y2) · · · σ2(Yn, Yn)


2. Note that the variances σ2(Yi) are on the main diagonal, and the covariance σ2(Yi, Yj)

is found in the ith row and jth column of the matrix.

3. The error terms in regression model have constant variance:

σ2(ε) = σ2I .

Some Basic Results

1. Frequently, we shall encounter a random vector W that is obtained by premulti-
plying the random vector Y by a constant matrix A (a matrix whose elements are
fixed): W = AY. Some basic results for this case are:

E(A) = A

E(W) = E(AY) = AE(Y)

σ2(W) = σ2(AY) = Aσ2(Y)A′ ,

where σ2(Y) is the variance-covariance matrix of Y.
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� Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p42)

Suppose that a random vector W that is obtained by premultiplying the random
vector Y by a constant matrix A, that is W = AY. Find the expected value and
the variance-covariance matrix of W.

sol:

Multivariate Normal Distribution

1. The density function of the multivariate normal distribution can now be stated as
follows:

f(Y) =
1

(2π)p/2|Σ|1/2
exp

[
−1

2
(Y − µ)′Σ−1(Y − µ)

]
,

where Y containing an observation on each of the p Y variables

Y =


Y1

Y2

...
Yp

 .

2. The mean vector E(Y), denoted by µ , contains the expected values for each
of the p Y variables:

µ =


µ1

µ2

...
µp

 .
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3. The variance-covariance matrix σ2(Y) is denoted by Σ : and contains as always
the variances and covariances of the p Y variables:

Σ =


σ2
1 σ12 · · · σ1p

σ21 σ2
2 · · · σ2p

... ... ...
σp1 σp2 · · · σ2

p


σ2
i denotes the variance of Y1, σij denotes the covariance of Yi and Yj.

4. The multivariate normal density function has properties that correspond to the ones
described for the bivariate normal distribution.

5. For instance, if Y1, · · · , Yp are jointly normally distributed (i.e., they follow the mul-
tivariate normal distribution), the marginal probability distribution of each variable
Yk is normal, with mean µk and standard deviation σk.

5.9 Simple Linear Regression Model in Matrix Terms
1. The normal error regression model (2.1):

Yi = β0 + β1Xi + εi, i = 1, · · · , n

2. The normal error regression model in matrix terms:

Yn×1 = Xn×2β2×1 + εn×1 ,

where

Y =


Y1

Y2

...
Yn

 , X =


1 X1

1 X2

... ...
1 Xn

 , β =

[
β0

β1

]
, ε =


ε1

ε2
...
εn

 ,

ε is a vector of independent normal random variables with E(ε) = 0 and σ2(ε) = σ2I
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5.10 Least Squares Estimation of Regression Param-
eters

Normal Equations

� Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p200)

Express the normal equations (1.9),

nb0 + b1
∑

Xi =
∑

Yi

b0
∑

Xi + b1
∑

X2
i =

∑
XiYi

in the matrix form
X′Xb = X′Y

where b is the vector of the least squares regression coefficients:

b2×1 =

[
b0

b1

]

sol:
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� Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p201)

Derive the normal equations by the method of least squares in matrix notation.

sol:

Estimated Regression Coefficients

1. Obtain the estimated regression coefficients from the normal equations (5.59) by
matrix methods, We premultiply both sides by

(X′X)−1X′Xb = (X′X)−1X′Y

We then find, since (X′X)−1X′X = I and Ib = b,

b = (X′X)−1X′Y
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� Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p200)

Use matrix methods to obtain the estimated regression coefficients for the Toluca
Company example.

sol:

5.11 Fitted Values and Residuals

Fitted Values

1. Let the vector of the fitted values Yi be denoted by Ŷ, then

Ŷ = Xb
Ŷ1

Ŷ2

...
Ŷn

 =


1 X1

1 X2

... ...
1 Xn


[

b0

b1

]
=


b0 + b1X1

b0 + b1X2

...
b0 + b1Xn


2. Hat Matrix We can express the matrix result for Ŷ as follows by using the expres-

sion for b in (5.60):
Ŷ = X(X′X)−1X′Y
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or, equivalently:
Ŷ = HY

where
Hn×n = X(X′X)−1X′

3. The fitted values Ŷi can be expressed as linear combinations of the response variable
observations Yi, with the coefficients being elements of the matrix H.

4. The H matrix involves only the observations on the predictor variable X. The square
n×n matrix H is called the Hat matrix. It plays an important role in diagnostics
for regression analysis (Chapter 10) when we consider whether regression results are
unduly influenced by one or a few observations.

5. The matrix H is symmetric and has the special property (called idempotency ):

HH = H

In general, a matrix M is said to be idempotent if MM = M.

Residuals

1. Let the vector of the residuals ei = Yi − Ŷi be denoted by e:

en×1 = Y − Ŷ = Y − Xb

2. Variance-Covariance Matrix of Residuals. The residuals ei, like the fitted val-
ues Ŷi, can be expressed as linear combinations of the response variable observations
Yi , using the result in (5.73) for Ŷ:

e = Y − Ŷ = Y − HY = (I − H)Y

We thus have the important result:

e = (I − H)Y

where H is the hat matrix defined in (5.53a). The matrix I−H, like the matrix H,
is symmetric and idempotent.
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3. The variance-covariance matrix of the vector of residuals e involves the matrix I−H:

σ2(e) = σ2(I − H)

and is estimated by:
s2(e) = MSE(I − H)

� Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p204)

Show that the variance-covariance matrix of e is σ2(e) = σ2(I − H).

sol:

5.12 Analysis of Variance Results

Sums of Squares

� Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p42)

Express the sums of squares, SSTO, SSE and SSR in matrix notation.

sol:
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Sums of Squares as Quadratic Forms

1. In general, a quadratic form is defined as:

dsY′AY1×1 =
∑n

i=1

∑n
j=1 aijYiYj , where aij = aji.

2. A is a symmetric n× n matrix and is called the matrix of the quadratic form.

3. The ANOVA sums of squares SSTO, SSE, and SSR are all quadratic forms ,
as can be seen by reexpressing b′X′.

� Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p42)

Show that the ANOVA sums of squares SSTO, SSE, and SSR are all quadratic
forms.

sol:
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5.13 Inferences in Regression Analysis

Regression Coefficients

� Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p42)

(a) Derive the variance-covariance matrix of the simple linear regression coefficients,
b by matrix methods. (b) Obtain the estimated variance-covariance matrix of b.

sol:

Mean Response∗

Prediction of New Observation∗

😍 TA Class'

&

$

%

• Problems: 5.5, 5.16, 5.22, 5.24, 5.26

• Exercises: 5.31
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