## THOMAS＇CALCULUS（12／E）

## 14．5 Directional Derivatives and Gradient Vectors

開課班級：（105－2）通訊 $1 /$ 電機 $1 /$ 智財學程 微積分
授課教師：吳漢銘（國立臺北大學統計學系 副教授）
教學網站：http：／／www．hmwu．idv．tw
系級： $\qquad$學號： $\qquad$姓名： $\qquad$

## 1 Directional Derivatives in the Plane

1．1 Suppose that the function $\qquad$ is defined throughout a region $R$ in the $x y$－ plane，that $\qquad$ is a point in $R$ ，and that $\qquad$ is a unit vector．Then the equations

$$
x=
$$

$\qquad$ ，$y=$ $\qquad$
parametrize the line through $P_{0}$ parallel to $\vec{u}$ ．
1．2 If the parameter $s$ measures $\qquad$ from $P_{0}$ in the direction of $\qquad$ ，we find the rate of change of $f$ at $P_{0}$ in the direction of $\vec{u}$ by calculating $\qquad$ at
$\qquad$ ．


FIGURE 14．26 The rate of change of $f$ in the direction of $\mathbf{u}$ at a point $P_{0}$ is the rate at which $f$ changes along this line at $P_{0}$ ．


FIGURE 14．27 The slope of curve $C$ at $P_{0}$ is $\lim _{Q \rightarrow P}$ slope $(P Q)$ ；this is the directional derivative

$$
\left(\frac{d f}{d s}\right)_{\mathbf{u}, P_{0}}=\left(D_{\mathbf{u}} f\right)_{P_{0}} .
$$

## 1．3 Definition

The derivative of $f$ at $P_{0}\left(x_{0}, y_{0}\right)$ in the direction of the unit vector $\vec{u}=u_{1} \vec{i}+u_{2} \vec{j}$ is the number
$\qquad$
povided the limit exists．

1．4 The derivative of $f$ at $P_{0}$ in the direction of $\vec{u}$ is also defined by $\qquad$ ．

1．5 The partial defivatives $f_{x}\left(x_{0}, y_{0}\right)$ and $f_{y}\left(x_{0}, y_{0}\right)$ are the $\qquad$ of $f$ at $P_{0}$ in the $\qquad$ and $\qquad$ directions．

Ex． 1 （example1，p785）

Using the definition，find the derivative of $f(x, y)=x^{2}+x y$ at $P_{0}(1,2)$ in the direction of the unit vector $\vec{u}=(1 / \sqrt{2}) \vec{i}+(1 / \sqrt{2}) \vec{j}$ sol：

## 2 Calculation and Gradients

2．1 Definition
The gradient vector（＿＿of $f(x, y)$ at a point $P_{0}\left(x_{0}, y_{0}\right)$ is the vector
$\qquad$

## 2．2 Theorem 9：The Directional Derivative Is a Dot Product

If $f(x, y)$ is differentiable in an open region containing $P_{0}\left(x_{0}, y_{0}\right)$ ，then
the dot product of $\qquad$ and $\qquad$ ．

Ex． 2
（example2，p786）
Find the derivative of $f(x, y)=x e^{y}+\cos (x y)$ at the point $(2,0)$ in the direction of $\vec{v}=3 \vec{i}-4 \vec{j}$ ．
sol：


FIGURE 14．28 Picture $\nabla f$ as a vector in the domain of $f$ ．The figure shows a number of level curves of $f$ ．The rate at which $f$ changes at $(2,0)$ in the direction $\mathbf{u}=(3 / 5) \mathbf{i}-(4 / 5) \mathbf{j}$ is $\nabla f \cdot \mathbf{u}=-1$
（Example 2）．

## 實習課練習（EXERCISE 14．5）

5．Find the gradient of the function at the given point．$f(x, y)=\sqrt{2 x+3 y},(-1,2)$
9．Find $\nabla f$ at the given point：$f(x, y, z)=e^{x+y} \cos z+(y+1) \sin ^{-1} x,(0,0, \pi / 6)$ ．
$\square$ In Exercise 11－18，find the derivative of the function at $P_{0}$ in the direction of $\vec{u}$ ．
11．$f(x, y)=2 x y-3 y^{2}, P_{0}(5,5), \vec{u}=4 \vec{i}+3 \vec{j}$ ．
13．$g(x, y)=\frac{x-y}{x y+2}, P_{0}(1,-1), \vec{u}=12 \vec{i}+5 \vec{j}$ ．
15．$f(x, y, z)=x y+y z+z x, P_{0}(1,-1,2), \vec{u}=3 \vec{i}+6 \vec{j}-2 \vec{k}$ ．
17．$g(x, y, z)=3 e^{x} \cos y z, P_{0}(0,0,0), \vec{u}=2 \vec{i}+\vec{j}-2 \vec{k}$ ．

