THOMAS' CALCULUS (12/E) 14.5 Directional Derivatives and Gradient Vectors

開課班級: (105-2) 通訊1/電機1/智財學程 微積分 授課教師: 吳漢銘 (國立臺北大學統計學系 副教授) 教學網站: http://www.hmwu.idv.tw

系級: ______ 學號: _____ 姓名: _____

1 Directional Derivatives in the Plane

1.1 Suppose that the function ______ is defined throughout a region R in the xy-plane, that _______ is a point in R, and that _______ is a unit vector. Then the equations

x =_____, y =

parametrize the line through P_0 parallel to \vec{u} .

1.2 If the parameter s measures from P_0 in the direction of _____, we find the rate of change of f at P_0 in the direction of \vec{u} by calculating at

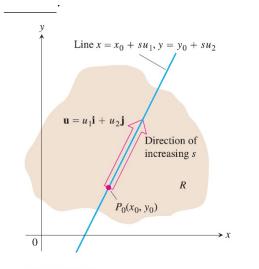


FIGURE 14.26 The rate of change of f in the direction of **u** at a point P_0 is the rate at which f changes along this line at P_0 .

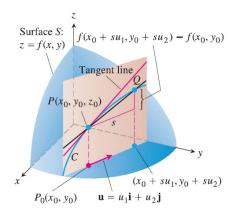


FIGURE 14.27 The slope of curve *C* at P_0 is $\lim_{Q \to P}$ slope (*PQ*); this is the

directional derivative

$$\left(\frac{df}{ds}\right)_{\mathbf{u}, P_0} = (D_{\mathbf{u}}f)_{P_0}.$$

1.3 Definition

The derivative of f at $P_0(x_0, y_0)$ in the direction of the unit vector $\vec{u} = u_1 \vec{i} + u_2 \vec{j}$ is the number

povided the limit exists.

1.4 The derivative of f at P_0 in the direction of \vec{u} is also defined by .

_

1.5 The partial defivatives $f_x(x_0, y_0)$ and $f_y(x_0, y_0)$ are the ______ of f at P_0 in the _____ and directions.

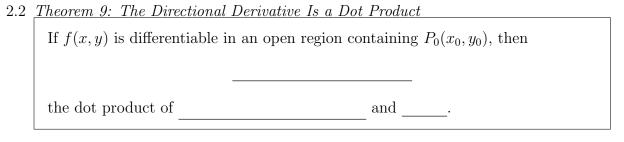
Using the definition, find the derivative of $f(x,y) = x^2 + xy$ at $P_0(1,2)$ in the direction of the unit vector $\vec{u} = (1/\sqrt{2})\vec{i} + (1/\sqrt{2})\vec{j}$

sol:

2 Calculation and Gradients

2.1 Definition

The gradient vector (_____) of f(x, y) at a point $P_0(x_0, y_0)$ is the vector _____=



Ex. 2 (example2, p786)

Find the derivative of $f(x, y) = xe^y + \cos(xy)$ at the point (2, 0) in the direction of $\vec{v} = 3\vec{i} - 4\vec{j}$.

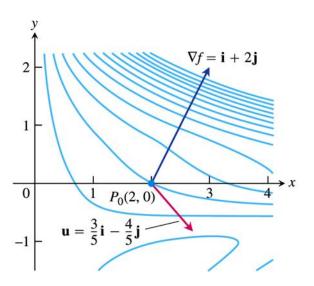


FIGURE 14.28 Picture ∇f as a vector in the domain of f. The figure shows a number of level curves of f. The rate at which f changes at (2, 0) in the direction $\mathbf{u} = (3/5)\mathbf{i} - (4/5)\mathbf{j}$ is $\nabla f \cdot \mathbf{u} = -1$ (Example 2).

實習課練習 (EXERCISE 14.5)

5. Find the gradient of the function at the given point. $f(x,y) = \sqrt{2x+3y}$, (-1,2)

9. Find ∇f at the given point: $f(x, y, z) = e^{x+y} \cos z + (y+1) \sin^{-1} x$, $(0, 0, \pi/6)$.

 $\Box\,$ In Exercise 11-18, find the derivative of the function at P_0 in the direction of $\vec{u}.$

11.
$$f(x,y) = 2xy - 3y^2$$
, $P_0(5,5)$, $\vec{u} = 4\vec{i} + 3\vec{j}$.

13.
$$g(x,y) = \frac{x-y}{xy+2}, P_0(1,-1), \vec{u} = 12\vec{i} + 5\vec{j}.$$

15.
$$f(x, y, z) = xy + yz + zx$$
, $P_0(1, -1, 2)$, $\vec{u} = 3\vec{i} + 6\vec{j} - 2\vec{k}$.

17.
$$g(x, y, z) = 3e^x \cos yz$$
, $P_0(0, 0, 0)$, $\vec{u} = 2\vec{i} + \vec{j} - 2\vec{k}$.