THOMAS＇CALCULUS（12／E）
 12．2 Vectors

開課班級：（105－2）通訊 $1 /$ 電機 $1 /$ 智財學程 微積分
授課教師：吳漢銘（國立臺北大學統計學系 副教授）
教學網站：http：／／www．hmwu．idv．tw
系級： \qquad學號： \qquad姓名： \qquad

1 Component Form

1．1 Definition

The vector represented by the \qquad has initial point
\qquad and terminal point \qquad and its length is denoted by \qquad ．Two
vectors are equal if they have the \qquad and \qquad ．

Definition

（a）If \vec{v} is a two－dimensional vector in the plane equal to the vector with initial point at the \qquad and terminal point \qquad ，then the component form of \qquad is \qquad ．
（b）If \vec{v} is a three－dimensional vector in the plane equal to the vector with ini－ tial point at the \qquad and terminal point \qquad ，then the component form of \vec{v} is \qquad ．

1．2 The magnitude or length of the vector $\vec{v}=\overrightarrow{P Q}, P\left(x_{1}, y_{1}, z_{1}\right), Q\left(x_{2}, y_{2}, z_{2}\right)$ ，is the nonnegative number
$\|\vec{v}\|=$ \qquad $=$ \qquad
Ex． 1 ．．．
Find the component form and length of the vector with initial point $P(-3,4,1)$ and terminal $Q(-5,2,2)$ ．
sol：

2 Vector Algebra Operations

2．1 Definition
Let $\vec{u}=<u_{1}, u_{2}, u_{3}>$ and $\vec{v}=<v_{1}, v_{2}, v_{3}>$ be vectors with k a scalar．
（a）Addition：$\vec{u}+\vec{v}=$ \qquad
（b）Scalar multiplication：$k \vec{u}=$ \qquad

（a）

（b）

FIGURE 12.12 （a）Geometric interpretation of the vector sum．（b）The parallelogram law of vector addition．

2．2 Properties of Vector Operations

Let $\vec{u}, \vec{v}, \vec{w}$ be vectors and a, b be scalars．
1．$\vec{u}+\vec{v}=$ \qquad 2．$(\vec{u}+\vec{v})+\vec{w}=$ \qquad
3．$\vec{u}+\overrightarrow{0}=$ \qquad 4．$\vec{u}+(-\vec{u})=$

5． $0 \vec{u}=\overrightarrow{0} \quad 6.1 \vec{u}=\vec{u}$
7．$a(b \vec{u})=$ \qquad 8．$a(\vec{u}+\vec{v})=$ \qquad
9．$(a+b) \vec{u}=$ \qquad

2．3 A vector \vec{v} of length 1 is called \qquad ．

2．4 The standard unit vector are \qquad ， \qquad ，and \qquad ．

2．5 Any vector $\vec{v}=<v_{1}, v_{2}, v_{3}>$ can be written as a linear combination of the standard
unit：

$$
\begin{aligned}
\vec{v} & = \\
& =\square \\
& =\square
\end{aligned}
$$

2．6 The scalar \qquad is the \qquad （ j－component，k－component）of the vector \vec{v} ．

2．7 The vector from $P\left(x_{1}, y_{1}, z_{1}\right)$ to $Q\left(x 2, y_{2}, z_{2}\right)$ is

$$
\overrightarrow{P Q}=
$$

\qquad
2．8 Whenever $\vec{u} \neq \overrightarrow{0}, \quad$ is a unit vector in the direction of \vec{v} ．
2．9 The equation $\vec{v}=$
\qquad expresses \vec{v} as its length times its direction．

2．10 The midpoint M of the line segment joining points $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ is the point \qquad ．
Ex． 2 ．．． 6668 ）
Let $\vec{u}=<-1,3,1>$ and $\vec{v}=<4,7,0>$ ．Find the component of（a） $2 \vec{u}+3 \vec{v}$
$\vec{u}-\vec{v}$（c）$\left\|\frac{1}{2} \vec{u}\right\|$ ．
sol：

Ex． 3 （example4，p669）

Find a unit vector \vec{u} in the direction of the vector from $P_{1}(1,0,1)$ to $P_{2}(3,2,0)$ ． sol：

實習課練習（EXERCISE 12．2）

In Exercise 17－22，express each vector in the form $\vec{v}=v_{1} \vec{i}+v_{2} \vec{j}+v_{3} \vec{k}$ ．
18．$\vec{P}_{1} P_{2}$ if $\overrightarrow{P_{1}}$ is the point $(1,2,0)$ and P_{2} is the point $(-3,0,5)$ ．
22．$-2 \vec{u}+3 \vec{v}$ if $\vec{u}=<-1,0,2>$ and $\vec{v}=<1,1,1>$ ．
25．Express $2 \vec{i}+\vec{j}-2 \vec{k}$ as a product of its length and direction．
33．Find a vector of magnitude 7 in the direction of $\vec{v}=12 \vec{i}-5 \vec{k}$ ．

