THOMAS' CALCULUS (12/E)

開課班級: (105-2) 通訊1/電機1/智財學程 微積分 授課教師: 吳漢銘 (國立臺北大學統計學系 副教授) 教學網站: http://www.hmwu.idv.tw

系級:	學號:	姓名:

1 Component Form

1.1 Definition

The vector represented by the		has initial point
and terminal point	_ and its length is denoted by	Two
vectors are equal if they have the	and	·

Definition

- (a) If \vec{v} is a two-dimensional vector in the plane equal to the vector with initial point at the ______ and terminal point ______, then the component form of ______ is _____.
- (b) If \vec{v} is a three-dimensional vector in the plane equal to the vector with initial point at the ______ and terminal point ______, then the component form of \vec{v} is ______.
- 1.2 The magnitude or length of the vector $\vec{v} = \vec{PQ}$, $P(x_1, y_1, z_1), Q(x_2, y_2, z_2)$, is the nonnegative number

Find the component form and length of the vector with initial point P(-3, 4, 1) and terminal Q(-5, 2, 2).

sol:

2 Vector Algebra Operations

2.1 Definition

Let $\vec{u} = \langle u_1, u_2, u_3 \rangle$ and $\vec{v} = \langle v_1, v_2, v_3 \rangle$ be vectors with k a scalar.

- (a) Addition: $\vec{u} + \vec{v} =$
- (b) Scalar multiplication: $k\vec{u} =$

FIGURE 12.12 (a) Geometric interpretation of the vector sum. (b) The parallelogram law of vector addition.

2.2 Properties of Vector Operations

- 2.4 The standard unit vector are _____, ____, and _____,
- 2.5 Any vector $\vec{v} = \langle v_1, v_2, v_3 \rangle$ can be written as a linear combination of the standard

	unit:					
	\vec{v} =					
	=					
	=					
2.6	The scalar the vector \vec{v} .	is the	(j-component, k -component) of			
2.7	2.7 The vector from $P(x_1, y_1, z_1)$ to $Q(x_2, y_2, z_2)$ is					
	$\vec{PQ} =$					
2.8	Whenever $\vec{u} \neq \vec{0}$,	is a unit vector in the	direction of \vec{v} .			
2.9	The equation $\vec{v} =$	expresses \vec{v} as its length times its direction.				
2.10	2.10 The midpoint M of the line segment joining points $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$ is the point					
	Ex. 2 (example3, p668)					
	Let $\vec{u} = \langle -1, 3, 1 \rangle$ and $\vec{v} = \langle 4, 7, 0 \rangle$. Find the component of (a) $2\vec{u} + 3\vec{v}$ (b) $\vec{u} - \vec{v}$ (c) $\ \frac{1}{2}\vec{u}\ $.					
	sol:					
	@ Ex. 3		(example4, p669)			

Find a unit vector \vec{u} in the direction of the vector from $P_1(1,0,1)$ to $P_2(3,2,0)$. sol:

實習課練習 (EXERCISE 12.2)

 \Box In Exercise 17-22, express each vector in the form $\vec{v} = v_1 \vec{i} + v_2 \vec{j} + v_3 \vec{k}$.

- **18.** $P_1 P_2$ if P_1 is the point (1, 2, 0) and P_2 is the point (-3, 0, 5).
- **22.** $-2\vec{u} + 3\vec{v}$ if $\vec{u} = < -1, 0, 2 > \text{ and } \vec{v} = < 1, 1, 1 >$.
- **25.** Express $2\vec{i} + \vec{j} 2\vec{k}$ as a product of its length and direction.
- **33.** Find a vector of magnitude 7 in the direction of $\vec{v} = 12\vec{i} 5\vec{k}$.