

1 One-to-One Functions and Inverse Functions

1.1 Definitions: One-to-One Function

A function f(x) is one-to-one on a domain D if ______ whenever ______ in D.

1.2 One-to-one: (a) $y = x^3$, (b) $y = \sqrt{x}$. (圖示如下)

1.3 Not one-to-one: (c) $y = x^2$, (d) $y = \sin x$. (圖示如下)

- 1.4 A function y = f(x) is one-to-one if and only if its graph interests each _____ at most _____.
- 1.5 Definitions: Inverse Function

Suppose that f is a one-to-one function on a domain D with range R. The inverse function ______ is defined by ______ if _____. The ______ of f^{-1} is ______ and the ______ of f^{-1} is ______.

- 1.6 $(f^{-1} \cdot f)(x) =$ _____ for all x in the domain of f.
- 1.7 $(f \cdot f^{-1})(y) =$ _____ for all y in the domain of f^{-1} .
- 1.8 Only a one-to-one function can have an _____.

2 Finding Inverses

2.1 Determining the graph of $y = f^{-1}(x)$ from the graph of y = f(x). (圖示如下)

2.2 Pass from f to f^{-1} .

(a)	Solve the equ	uation	for x . T	his gives a for	rmula	
	where x is expressed as a function of y .					
(b)	Interchange	, obtair	ning a for	mula	where	f^{-1} is
expressed in the conventional format with x as $\overline{\mathbf{t}}$				x as the		variable
	and y as the					
\textcircled{P} Ex. 1 (example3, p364) Find the inverse of $y=\frac{1}{2}x+1,$ expressed as a function of $x.$ sol:						

Ex. 2 (example4, p364)

Find the inverse of the function $y = x^2$, $x \ge 0$, expressed as a function of x. sol:

3 Derivatives of Inverses of Differentiable Functions

3.1
$$f(x) = (1/2)x + 1$$
 and $f^{-1}(x) =$ _____.
 $\frac{d}{dx}f(x) =$ _____.
 $\frac{d}{dx}f^{-1}(x) =$ _____.

3.2 Theorem 1: The Derivative Rule for Inverses

- (a) If f has an interval I as domain and f'(x) exists and is never zero on I, then f^{-1} is at every point in its domain.
- (b) The value of $(f^{-1})'$ at a point b in the domain of f^{-1} is the ______ of f' the value of at the point $a = f^{-1}(b)$: $(f^{-1})'(b) = \qquad \text{or} \quad \frac{d}{dx}f^{-1}\Big|_{x=b} =$
- 3.3 When y = f(x) is differentiable at x = a and we change x by a small amount dx, the corresponding change in y is approximately ______. This means that y changes about _______ times as fast as x when x = a and that x changes about times as fast as y when y = b.
- 3.4 It is reasonable that the derivative of f^{-1} at b is the ______ of the derivative of f at a.
 - Ex. 3 (example5, p366)

Apply The Derivative Rule for Inverse Theorem to the function $f(x) = x^2, x \ge 0$. sol:

Let $f(x) = x^3 - 2$. Find the value of df^{-1}/dx at x = 6 = f(2) without finding a formula for $f^{-1}(x)$.

sol:

實習課練習 (EXERCISE 7.1)

- **21.** Let $f(x) = x^3 1$. Find a formula for f^{-1} .
- **22.** Let $f(x) = x^2 2x + 1$, $x \ge 1$. Find a formula for f^{-1} .
- **33.** Let $f(x) = x^2 2x$, $x \leq 1$. Find f^{-1} and identify the domain and range of f^{-1} .
- **37.** Let f(x) = 5 4x, a = 1/2. Find $f^{-1}(x)$. Evaluate df/dx at x = a and df^{-1}/dx at x = f(a).
- **38.** Let $f(x) = 2x^2$, $x \ge 0$, a = 5. Find $f^{-1}(x)$. Evaluate df/dx at x = a and df^{-1}/dx at x = f(a).
- **41.** Let $f(x) = x^3 3x^2 1$, $x \ge 2$. Find the value of df^{-1}/dx at the point x = -1 = f(3).