THOMAS＇CALCULUS（12／E）

7．1 Inverse Function and Their Derivatives

開課班級：（105－2）通訊 $1 /$ 電機 $1 /$ 智財學程 微積分
授課教師：吳漢銘（國立臺北大學統計學系 副教授）
教學網站：http：／／www．hmwu．idv．tw

系級： \qquad學號： \qquad姓名： \qquad

1 One－to－One Functions and Inverse Functions

1．1 Definitions：One－to－One Function
A function $f(x)$ is one－to－one on a domain D if \qquad whenever
\qquad in D ．

1．2 One－to－one：（a）$y=x^{3}$ ，（b）$y=\sqrt{x}$ ．（圖示如下）

1．3 Not one－to－one：（c）$y=x^{2}$ ，（d）$y=\sin x$ ．（圖示如下）

1．4 A function $y=f(x)$ is one－to－one if and only if its graph interests each \qquad at most \qquad ．

1．5 Definitions：Inverse Function

Suppose that f is a one－to－one function on a domain D with range R ．The inverse function \qquad is defined by
if
\qquad
\qquad
The \qquad of f^{-1} is \qquad and the \qquad of f^{-1} is \qquad ．
$1.6\left(f^{-1} \cdot f\right)(x)=$ \qquad for all x in the domain of f ．
$1.7\left(f \cdot f^{-1}\right)(y)=$ \qquad for all y in the domain of f^{-1} ．

1．8 Only a one－to－one function can have an \qquad ．

2 Finding Inverses

2．1 Determining the graph of $y=f^{-1}(x)$ from the graph of $y=f(x)$ ．（圖示如下）

2．2 Pass from f to f^{-1} ．
（a）Solve the equation \qquad for x ．This gives a formula where x is expressed as a function of y ．
（b）Interchange \qquad ，obtaining a formula \qquad where f^{-1} is expressed in the conventional format with x as the \qquad variable and y as the \qquad ．

Ex． 1 （example3，p364）

Find the inverse of $y=\frac{1}{2} x+1$ ，expressed as a function of x ．
sol：

Ex． 2 \qquad
Find the inverse of the function $y=x^{2}, x \geq 0$ ，expressed as a function of x ． sol：

3 Derivatives of Inverses of Differentiable Functions

$3.1 f(x)=(1 / 2) x+1$ and $f^{-1}(x)=$ \qquad ．

$$
\begin{aligned}
& \frac{d}{d x} f(x)= \\
& \frac{d}{d x} f^{-1}(x)= \\
&
\end{aligned}
$$

3．2 Theorem 1：The Derivative Rule for Inverses
（a）If f has an interval I as domain and $f^{\prime}(x)$ exists and is never zero on I ，then f^{-1} is \qquad at every point in its domain．
（b）The value of $\left(f^{-1}\right)^{\prime}$ at a point b in the domain of f^{-1} is the of f^{\prime} the value of at the point $a=f^{-1}(b)$ ：

$$
\left(f^{-1}\right)^{\prime}(b)=\quad \text { or }\left.\quad \frac{d}{d x} f^{-1}\right|_{x=b}=
$$

3．3 When $y=f(x)$ is differentiable at $x=a$ and we change x by a small amount $d x$ ， the corresponding change in y is approximately \qquad ．This means that y changes about \qquad times as fast as x when $x=a$ and that x changes about times as fast as y when $y=b$ ．

3．4 It is reasonable that the derivative of f^{-1} at b is the \qquad of the derivative of f at a ．

Ex． 3
（example5，p366）
Apply The Derivative Rule for Inverse Theorem to the function $f(x)=x^{2}, x \geq 0$ ． sol：

Ex． 4 （example6，p366）

Let $f(x)=x^{3}-2$ ．Find the value of $d f^{-1} / d x$ at $x=6=f(2)$ without finding a formula for $f^{-1}(x)$ ．
sol：

實習課練習（EXERCISE 7．1）

21．Let $f(x)=x^{3}-1$ ．Find a formula for f^{-1} ．
22．Let $f(x)=x^{2}-2 x+1, x \geq 1$ ．Find a formula for f^{-1} ．
33．Let $f(x)=x^{2}-2 x, x \leq 1$ ．Find f^{-1} and identify the domain and range of f^{-1} ．
37．Let $f(x)=5-4 x, a=1 / 2$ ．Find $f^{-1}(x)$ ．Evaluate $d f / d x$ at $x=a$ and $d f^{-1} / d x$ at $x=f(a)$ ．

38．Let $f(x)=2 x^{2}, x \geq 0, a=5$ ．Find $f^{-1}(x)$ ．Evaluate $d f / d x$ at $x=a$ and $d f^{-1} / d x$ at $x=f(a)$ ．

41．Let $f(x)=x^{3}-3 x^{2}-1, x \geq 2$ ．Find the value of $d f^{-1} / d x$ at the point $x=-1=$ $f(3)$ ．

