微積分會考

選擇題

1．As a rumor spreads across a college campus，the number of people that have heard it can be modeled by the equation，$N(t)=\frac{6000 t^{2}+2700 t}{(2 t+3)^{2}}$ ， where t is days since the rumor started spreading．What happens to the number of people that have heard the rumor in the long run（as $t \rightarrow \infty$ ）？
（a） 5000
（b） 6000
（c） 1500
（d） 400
Ans：c
2．During a medical procedure，the size of a roughly spherical tumor is estimated by measuring its diameter and using the formula $V=\frac{4}{3} \pi R^{3}$（R： radius）to compute its volume．If the diameter is measured as 2.5 cm with a maximum error of 2% ，what is the range of the volume measurement？
（a） $6.85 \leq V \leq 9.27$
（b） $7.69 \leq V \leq 8.67$
（c） $4.78 \leq V \leq 7.53$
（d） $5.23 \leq V \leq 6.12$
Ans：b
3．Suppose that $F(x)=f(g(x))$ and $g(14)=2, g^{\prime}(14)=5, f^{\prime}(14)=15$ ，and $f^{\prime}(2)=16$ ．Find $F^{\prime}(14)$ ．
（a） 20
（b） 80
（c） 17
（d） 24
Ans：b
4. Find the derivative of the function $f(x)=x^{5}$. State the domain of the function and the domain of its derivative.
(a) $f^{\prime}(x)=-5 x^{4}, \mathbb{R}, \mathbb{R}$
(b) $f^{\prime}(x)=x^{4}, \mathbb{R}, \mathbb{R}^{+}$
(c) $f^{\prime}(x)=5 x^{4}, \mathbb{R}, \mathbb{R}$
(d) $f^{\prime}(x)=5 x^{4}, \mathbb{R}, \mathbb{R}^{+}$

Ans: c
5. Consider a function

$$
f(x)= \begin{cases}2-x, & \text { if } x<0 \\ 2, & \text { if } x=0 \\ \sqrt{4+x^{2}}, & \text { if } x>0\end{cases}
$$

Which of the following is correct?
(a) The function is continuous but not differentiable at $x=0$
(b) The function is differentiable but discontinuous at $x=0$
(c) None of above
(d) The function is continuous and differentiable at $x=0$

Ans: a
6. A bus company will charter a bus that holds 52 people to groups of 34 or more. If a group contains exactly 34 people, each person pays $\$ 65$. In large groups, everybody's fare is reduced by $\$ 1$ for each person in excess of 34. Determine the size of the group for which the bus company's revenue will be greatest.
(a) 34 with revenue $\$ 2210$.
(b) Groups of 49 or 50 with revenue $\$ 2450$.
(c) Groups of 49 or 50 with revenue $\$ 2210$.
(d) 34 with revenue $\$ 2450$.

Ans: b
7. Diagrams indicating intervals of increase or decrease and concavity are given. Select a possible graph for a function with these characteristics.

$$
f^{\prime}(x) \xrightarrow[-2]{+++---}
$$

1: Sign of $f^{\prime}(x)$

$$
f^{\prime \prime}(x) \xrightarrow[-]{+++},---c-c \mid+++
$$

2: Sign of $f^{\prime \prime}(x)$
[a]

[b]

[c]

Ans: d
8. Differentiate the function $f(x)=\frac{\sqrt[3]{x+9}}{(3-8 x)^{9}}$.
(a) $f^{\prime}(x)=\frac{\sqrt[3]{x+9}}{(3-8 x)^{9}} \cdot\left[\frac{1}{3} \frac{1}{x+9}-\frac{72}{3-8 x}\right]$
(b) $f^{\prime}(x)=\frac{\sqrt[3]{x+9}}{(3-8 x)^{9}} \cdot\left[\frac{1}{3} \frac{1}{x+9}+\frac{72}{3-8 x}\right]$
(c) $f^{\prime}(x)=\frac{x+9}{(3-8 x)^{9}} \cdot\left[\frac{1}{3} \frac{1}{x+9}+\frac{72}{3-8 x}\right]$
(d) $f^{\prime}(x)=\frac{1}{3} \frac{1}{x+9}+\frac{72}{3-8 x}$

Ans: b
9. Find the inflection point of the function $f(x)=x e^{-2 x}$.
(a) $\left(2, e^{2}\right)$
(b) $\left(1, e^{-2}\right)$
(c) $\left(3, e^{2}\right)$
(d) $\left(1, e^{3}\right)$

Ans: b
10. Choose the correct graph for the given function $y=e^{x-2}$.
[a]

[c]

[d]

Ans: b
11. Find the relative extrema of the function $f(x)=\frac{1}{\sqrt{3 \pi}} e^{-x^{2} / 2}$. Round your answer to one decimal place.
(a) Relative minimum is $(0,0.3)$.
(b) Relative minimum is $(0,-0.3)$; relative maximum is $(1,0.3)$.
(c) Relative minimum is $(-1,-0.3)$; relative maximum is $(1,0.3)$.
(d) Relative maximum is $(0,0.3)$.

Ans: d
12. Find the limit of $\lim _{x \rightarrow \infty}\left(1+\frac{2}{x}\right)^{5 x}$
(a) 1
(b) e^{10}
(c) e^{3}
(d) ∞

Ans: b
13. Given $f^{\prime}(x)=\frac{x+1}{\sqrt{x}}$ and $f(4)=5$. Find the function f.
(a) $f(x)=\frac{2}{3} x^{3 / 2}+2 \sqrt{x}-13 / 3$
(b) $f(x)=x^{3}-2 x^{2}+8 x-4$
(c) $f(x)=x^{3 / 2} / 3+2 x^{2}-13 / 3$
(d) $f(x)=2 x^{3}-2 x-13 / 3$

Ans: a
14. Find $\int \frac{6 e^{x}+6 e^{-x}}{e^{x}-e^{-x}} d x$.
(a) $6 \ln \left|e^{x}-e^{-x}\right|+C$.
(b) $\frac{1}{6} \ln \left|e^{x}+e^{-x}\right|+C$.
(c) $6 \ln \left|e^{x}+e^{-x}\right|+C$.
(d) $\frac{1}{6} \ln \left|e^{x}-e^{-x}\right|+C$.

Ans: a
15. Find $\int \frac{x}{x-7} d x$.
(a) $\int \frac{x}{x-7} d x=x+7 \ln |x-7|+C$
(b) $\int \frac{x}{x-7} d x=x+\ln |x-7|+C$
(c) $\int \frac{x}{x-7} d x=x-\ln |x-7|+C$
(d) $\int \frac{x}{x-7} d x=x-7 \ln |x-7|+C$

Ans: a
16. Consider the three functions in the following figure.

Which of the following is correct?
(a) $\int_{0}^{1} \frac{1}{x^{2}} d x$ is convergent to 1 .
(b) $\int_{1}^{\infty} \frac{1}{x^{2}} d x$ is convergent to 1 .
(c) By using Comparison Theorem, $\int_{0}^{1} g(x) d x$ is convergent.
(d) By using Comparison Theorem, $\int_{1}^{\infty} f(x) d x$ is divergent.

Ans: b
17. Find the relative minimum of the function, $f(x, y)=2 x^{2}+y^{2}$, subject to the constraint $g(x, y)=x+y-1=0$.
(a) $2 / 3$
(b) 2.5
(c) $3 / 5$
(d) 3

Ans: a
18. Find the volume of the solid bounded above by the surface $z=f(x, y)$ and below by the plane region R, where $f(x, y)=2 x^{2} y ; R$ is the region bounded by the graphs of $y=x$ and $y=x^{2}$.
(a) $2 / 35$
(b) $13 / 5$
(c) $17 / 2$
(d) $4 / 7$

Ans: a
19. Choose the correct sketch of the indicated level curve $f(x, y)=C$ for the given constant C. $f(x, y)=9 y e^{x} ; C=2$.
[a]

Ans：c

20．Describe the domain of the given function

$$
f(x, y)=\frac{3 x}{\ln (x+2 y)}
$$

（a）All ordered pairs (x, y) of real numbers for which $x+2 y<0$ and $x+2 y=1$ ．
（b）All ordered pairs (x, y) of real numbers for which $x+2 y>0$ and $x+2 y \neq 1$ ．
（c）All ordered pairs (x, y) of real numbers for which $x+2 y<0$ and $x+2 y \neq 1$ ．
（d）All ordered pairs (x, y) of real numbers for which $x+2 y>0$ and $x+2 y=1$ ．

Ans：b

填空題

1．Find the absolute maximum value and the absolute minimum value，if any，of the function，$f(x)=3 x^{2 / 3}-2 x$ on $[0,3]$ ．

Ans：the absolute maximum value： 1 ；the absolute minimum value： 0
2．Differentiate the given function．Give your answer in terms of natural logs with the arguments in parentheses［e．g． $\ln (x)]$ ．

$$
f(x)=\frac{\log _{8} x}{14 \sqrt{x}}
$$

Ans：$\frac{2-\ln x}{28 \cdot \ln 8 \cdot x \sqrt{x}}$ ．
3. Find the area of the region bounded by the graphs of the functions $y=$ $x^{4}+1$ and $y=2 x^{2}$.
Ans: $\frac{16}{15}$
4. Find the area of the region R that lies under the given curve $y=f(x)$ over the indicated interval $a \leq x \leq b$. Under $y=\frac{4}{x}$, over $1 \leq x \leq e^{6}$. Ans: $\int_{1}^{e^{6}} \frac{4}{x} d x=24$.
5. Compute $\int x^{2} \ln (2 x) d x$.

Ans: $\frac{x^{3}}{3}\left(\ln x+\ln 2-\frac{1}{3}\right)+C$
6. Find the area of the region R that is completely enclosed by the graphs of the functions $f(x)=4 x$ and $g(x)=x^{3}+3 x^{2}$.
Ans: Area $=32$
7. The concentration of a drug t hours after being injected into a patient's bloodstream is $C(t)=360 t e^{-\frac{t}{2}} \mathrm{mg} / \mathrm{mL}$. What is the average concentration of drug in the patient's bloodstream over the first 12 hours after the injection?
Ans: $120-\frac{840}{e^{6}}$
8. At a certain factory, the daily output is $Q(K, L)=50 K^{1 / 2} L^{1 / 3}$ units, where K denotes the capital investment measured in units of $\$ 1,000$ and L the size of the labor force measured in worker-hours. Suppose that the current capital investment is $\$ 625,000$ and that 2,197 worker-hours of labor are used each day. Use marginal analysis to estimate the effect of an additional capital investment of $\$ 1,000$ on the daily output if the size of the labor force is not changed.
Ans: Daily output will increase by 13 units.
9. Evaluate the integral $\int_{0}^{1} \int_{x^{2}}^{1} x e^{y^{2}} d y d x$.

Ans: $\frac{1}{4}(e-1)$
10. Find the volume of the solid lying under the plane $z=4+x^{2}-y^{2}$ and above the square $R=[-1,1] \times[0,2]$.
Ans: $\int_{0}^{2} \int_{-1}^{1} 4+x^{2}-y^{2} d x d y=12$.

