微積分會考

選擇題

- 1. As a rumor spreads across a college campus, the number of people that have heard it can be modeled by the equation, $N(t) = \frac{6000t^2+2700t}{(2t+3)^2}$, where t is days since the rumor started spreading. What happens to the number of people that have heard the rumor in the long run (as $t \to \infty$)?
 - (a) 5000
 - (b) 6000
 - (c) 1500
 - (d) 400

Ans: c

- 2. During a medical procedure, the size of a roughly spherical tumor is estimated by measuring its diameter and using the formula $V = \frac{4}{3}\pi R^3$ (R: radius) to compute its volume. If the diameter is measured as 2.5 cm with a maximum error of 2%, what is the range of the volume measurement?
 - (a) $6.85 \le V \le 9.27$
 - (b) $7.69 \le V \le 8.67$
 - (c) $4.78 \le V \le 7.53$
 - (d) $5.23 \le V \le 6.12$

Ans: b

- 3. Suppose that F(x) = f(g(x)) and g(14) = 2, g'(14) = 5, f'(14) = 15, and f'(2) = 16. Find F'(14).
 - (a) 20
 - (b) 80
 - (c) 17
 - (d) 24

Ans: b

- 4. Find the derivative of the function $f(x) = x^5$. State the domain of the function and the domain of its derivative.
 - (a) $f'(x) = -5x^4$, \mathbb{R} , \mathbb{R}
 - (b) $f'(x) = x^4$, \mathbb{R} , \mathbb{R}^+
 - (c) $f'(x) = 5x^4$, \mathbb{R} , \mathbb{R}
 - (d) $f'(x) = 5x^4$, \mathbb{R} , \mathbb{R}^+

Ans: c

5. Consider a function

$$f(x) = \begin{cases} 2 - x, & \text{if } x < 0\\ 2, & \text{if } x = 0\\ \sqrt{4 + x^2}, & \text{if } x > 0 \end{cases}$$

Which of the following is correct?

- (a) The function is continuous but not differentiable at x = 0
- (b) The function is differentiable but discontinuous at x = 0
- (c) None of above
- (d) The function is continuous and differentiable at x = 0

Ans: a

- 6. A bus company will charter a bus that holds 52 people to groups of 34 or more. If a group contains exactly 34 people, each person pays \$65. In large groups, everybody's fare is reduced by \$1 for each person in excess of 34. Determine the size of the group for which the bus company's revenue will be greatest.
 - (a) 34 with revenue \$2210.
 - (b) Groups of 49 or 50 with revenue \$2450.
 - (c) Groups of 49 or 50 with revenue \$2210.
 - (d) 34 with revenue \$2450.

Ans: b

7. Diagrams indicating intervals of increase or decrease and concavity are given. Select a possible graph for a function with these characteristics.

2: Sign of f''(x)

Ans: d

8. Differentiate the function $f(x) = \frac{\sqrt[3]{x+9}}{(3-8x)^9}$.

(a)
$$f'(x) = \frac{\sqrt[3]{x+9}}{(3-8x)^9} \cdot \left[\frac{1}{3}\frac{1}{x+9} - \frac{72}{3-8x}\right]$$

(b) $f'(x) = \frac{\sqrt[3]{x+9}}{(3-8x)^9} \cdot \left[\frac{1}{3}\frac{1}{x+9} + \frac{72}{3-8x}\right]$
(c) $f'(x) = \frac{x+9}{(3-8x)^9} \cdot \left[\frac{1}{3}\frac{1}{x+9} + \frac{72}{3-8x}\right]$
(d) $f'(x) = \frac{1}{3}\frac{1}{x+9} + \frac{72}{3-8x}$

Ans: b

- 9. Find the inflection point of the function $f(x) = xe^{-2x}$.
 - (a) $(2, e^2)$
 - (b) $(1, e^{-2})$
 - (c) $(3, e^2)$
 - (d) $(1, e^3)$

Ans: b

10. Choose the correct graph for the given function $y = e^{x-2}$.

Ans: b

- 11. Find the relative extrema of the function $f(x) = \frac{1}{\sqrt{3\pi}}e^{-x^2/2}$. Round your answer to one decimal place.
 - (a) Relative minimum is (0, 0.3).
 - (b) Relative minimum is (0, -0.3); relative maximum is (1, 0.3).
 - (c) Relative minimum is (-1, -0.3); relative maximum is (1, 0.3).
 - (d) Relative maximum is (0, 0.3).

Ans: d

- 12. Find the limit of $\lim_{x\to\infty} (1+\frac{2}{x})^{5x}$
 - (a) 1
 - (b) e^{10}
 - (c) e^{3}
 - (d) ∞
 - Ans: b
- 13. Given $f'(x) = \frac{x+1}{\sqrt{x}}$ and f(4) = 5. Find the function f.
 - (a) $f(x) = \frac{2}{3}x^{3/2} + 2\sqrt{x} \frac{13}{3}$ (b) $f(x) = x^3 - 2x^2 + 8x - 4$ (c) $f(x) = \frac{x^{3/2}}{3} + \frac{2x^2 - \frac{13}{3}}{3}$ (d) $f(x) = \frac{2x^3 - 2x - \frac{13}{3}}{3}$ Ans: a
- 14. Find $\int \frac{6e^x + 6e^{-x}}{e^x e^{-x}} dx$.
 - (a) $6 \ln|e^x e^{-x}| + C.$
 - (b) $\frac{1}{6} \ln|e^x + e^{-x}| + C.$
 - (c) $6 \ln|e^x + e^{-x}| + C.$
 - (d) $\frac{1}{6} \ln |e^x e^{-x}| + C.$

Ans: a

15. Find
$$\int \frac{x}{x-7} dx$$
.
(a) $\int \frac{x}{x-7} dx = x + 7 \ln |x-7| + C$
(b) $\int \frac{x}{x-7} dx = x + \ln |x-7| + C$
(c) $\int \frac{x}{x-7} dx = x - \ln |x-7| + C$
(d) $\int \frac{x}{x-7} dx = x - 7 \ln |x-7| + C$
Ans: a

16. Consider the three functions in the following figure.

Which of the following is correct?

- (a) $\int_0^1 \frac{1}{x^2} dx$ is convergent to 1.
- (b) $\int_{1}^{\infty} \frac{1}{x^2} dx$ is convergent to 1.
- (c) By using Comparison Theorem, $\int_0^1 g(x) dx$ is convergent.
- (d) By using Comparison Theorem, $\int_1^{\infty} f(x) dx$ is divergent.

Ans: b

- 17. Find the relative minimum of the function, $f(x, y) = 2x^2 + y^2$, subject to the constraint g(x, y) = x + y 1 = 0.
 - (a) 2/3
 - (b) 2.5
 - (c) 3/5
 - (d) 3

Ans: a

- 18. Find the volume of the solid bounded above by the surface z = f(x, y) and below by the plane region R, where $f(x, y) = 2x^2y$; R is the region bounded by the graphs of y = x and $y = x^2$.
 - (a) 2/35
 - (b) 13/5
 - (c) 17/2
 - (d) 4/7
 - Ans: a
- 19. Choose the correct sketch of the indicated level curve f(x, y) = C for the given constant C. $f(x, y) = 9ye^x$; C = 2.

Ans: c

20. Describe the domain of the given function

$$f(x,y) = \frac{3x}{\ln(x+2y)}$$

- (a) All ordered pairs (x, y) of real numbers for which x + 2y < 0 and x + 2y = 1.
- (b) All ordered pairs (x, y) of real numbers for which x + 2y > 0 and $x + 2y \neq 1$.
- (c) All ordered pairs (x, y) of real numbers for which x + 2y < 0 and $x + 2y \neq 1$.
- (d) All ordered pairs (x, y) of real numbers for which x + 2y > 0 and x + 2y = 1.

Ans: b

填空題

1. Find the absolute maximum value and the absolute minimum value, if any, of the function, $f(x) = 3x^{2/3} - 2x$ on [0, 3].

Ans: the absolute maximum value: 1; the absolute minimum value: 0

2. Differentiate the given function. Give your answer in terms of natural logs with the arguments in parentheses [e.g. $\ln(x)$].

$$f(x) = \frac{\log_8 x}{14\sqrt{x}}$$

Ans: $\frac{2-lnx}{28 \cdot ln8 \cdot x\sqrt{x}}$

- 3. Find the area of the region bounded by the graphs of the functions $y = x^4 + 1$ and $y = 2x^2$. Ans: $\frac{16}{15}$
- 4. Find the area of the region R that lies under the given curve y = f(x) over the indicated interval $a \le x \le b$. Under $y = \frac{4}{x}$, over $1 \le x \le e^6$. Ans: $\int_1^{e^6} \frac{4}{x} dx = 24$.
- 5. Compute $\int x^2 \ln(2x) dx$.

Ans:
$$\frac{x^3}{3}(lnx + ln2 - \frac{1}{3}) + C$$

- 6. Find the area of the region R that is completely enclosed by the graphs of the functions f(x) = 4x and $g(x) = x^3 + 3x^2$. Ans: Area = 32
- 7. The concentration of a drug t hours after being injected into a patient's bloodstream is $C(t) = 360te^{-\frac{t}{2}} \text{ mg/mL}$. What is the average concentration of drug in the patient's bloodstream over the first 12 hours after the injection? Ans: $120 - \frac{840}{e^6}$
- 8. At a certain factory, the daily output is $Q(K, L) = 50K^{1/2}L^{1/3}$ units, where K denotes the capital investment measured in units of \$1,000 and L the size of the labor force measured in worker-hours. Suppose that the current capital investment is \$625,000 and that 2,197 worker-hours of labor are used each day. Use marginal analysis to estimate the effect of an additional capital investment of \$1,000 on the daily output if the size of the labor force is not changed.

Ans: Daily output will increase by 13 units.

- 9. Evaluate the integral $\int_0^1 \int_{x^2}^1 x e^{y^2} dy dx$. Ans: $\frac{1}{4}(e-1)$
- 10. Find the volume of the solid lying under the plane $z = 4 + x^2 y^2$ and above the square $R = [-1, 1] \times [0, 2]$. Ans: $\int_0^2 \int_{-1}^1 4 + x^2 - y^2 dx dy = 12$.