Statistical Microarray Data Analysis

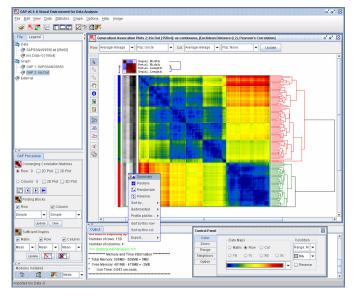
Clustering and Visualization

國立陽明大學生物資訊研究所 95學年度暑期「生物資訊與系統生物學學分班」 Course: 系統生物學實驗

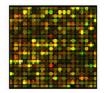
2006年7月19日

Outlines

- **Overview of Microarray Experiment**
- **Clustering Analysis and Visualization**
- Distance and Similarity Measure
- **K**-Means Clustering


Visualizing Clustering Results: Dimension Reduction Techniques

- Principal Component Analysis (PCA)
- ♦ Multidimensional Scaling (MDS)

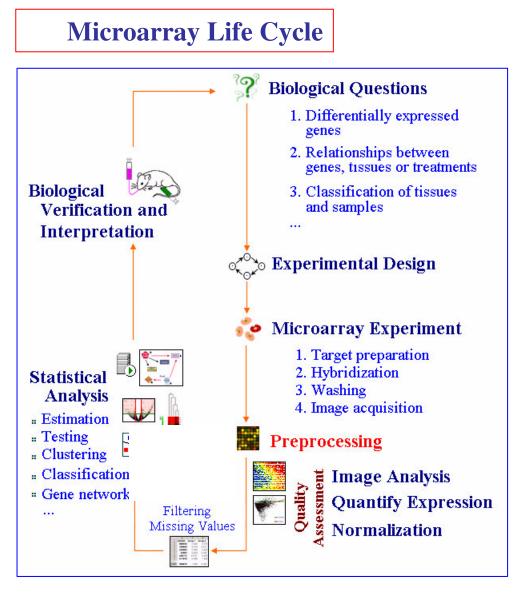

Clustering Analysis and Visualization

- Self-Organizing Maps (SOM)
- Heat Map
- ♦ Hierarchical Clustering
- ◆ QT (Quality Threshold) Clustering
- **Choosing the Number of Clusters**
- Generalized Association Plots (GAP)
- Isomap
- **Software**

GAP: Demo

Overview of Microarray Experiment

cDNA Microarray Data


	A	В	С	D
1	UNIQID	Gene Name Description	Array 1	Array 2
2	588029	588029:Hs.79:ACY1	0.645	0.375
3	190929	190929:Hs.247565:RHO	0.615	0.210
4	246550	246550:Hs.293548	0.585	0.665
5	32553	32553:Hs.101248	0.825	0.230
б	446172	446172:	0.570	0.495
7	417978	417978:Hs.268874	0.495	1.835
12000	366879	366879:Hs.169341	1.835	0.300

log2(Cy5/Cy3)

Oligonucleotide Array Data

	A	В	С	D			
1	Probeset	Gene Name	Array 1	Array 2			
2	103941_at	alpha-spectin 1, erythroid	33.7625	29.2333			
3	104432_at	aplysia ras-related homolog N (Rh	127.736	99.6895			
4	104137_at	ATP-binding cassette, sub-family /	109.522	65.2727			
5	98458_at	baculoviral IAP repeal-containing 5	128.96	123.371			
б	93243_at	bone morphogenetic protein 7	174.85	174.019			
7	95061_at	breast carcinoma amplified sequer	34.8	43.6696			
			/				
12600	102632_at	calmodulin binding protein 1	69,888	54.7391			
	Expression index						

Clustering Analysis (Unsupervised Learning)

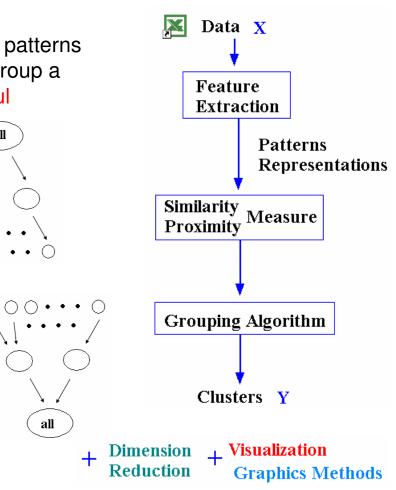
What is Clustering?

Cluster analysis is the organization of a collection of patterns into clusters based on similarity. The problem is to group a given collection of unlabeled patterns into meaningful clusters.

Hierarchical clustering

The result is a tree that depicts the relationships between the objects.

Divisive clustering:


begin at step 1 with all the data in one cluster.

Agglomerative clustering:

all the objects start apart., there are n clusters at step 0.

Non-Hierarchical clustering

 k-means, The EM algorithm, K Nearest Neighbor,...

4 /56

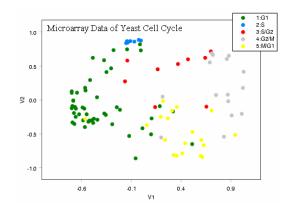
Two important properties of a clustering definition:

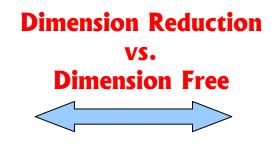
1. Most of data has been organized into non-overlapping clusters.

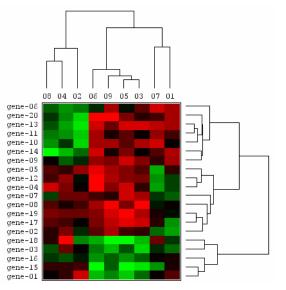
2. Each cluster has a within variance and one between variance for each of the other clusters. A good cluster should have a small within variance and large between variance.

Data/Information Visualization

What is Visualization?

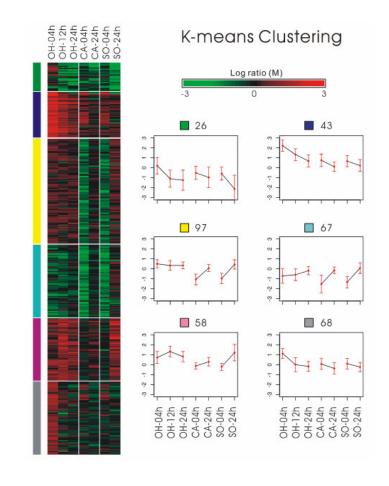

- To visualize = to make visible, to transform into pictures.
- Making things/processes visible that are not directly accessible by the human eye.
- Transformation of an abstraction to a picture.
- Computer aided extraction and display of information from data.


Data/Information Visualization

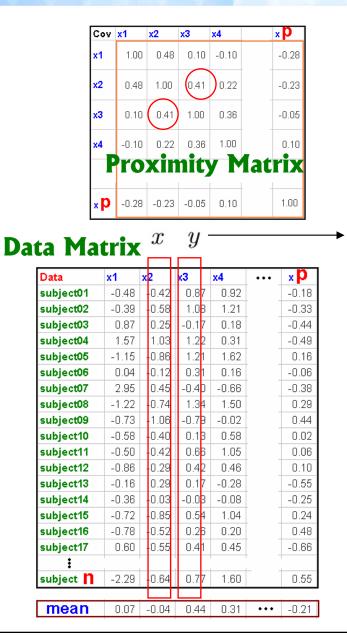

- Exploiting the human visual system to extract information from data.
- Provides an overview of complex data sets.
- Identifies structure, patterns, trends, anomalies, and relationships in data.
- Assists in identifying the areas of interest.

Visualization = Graphing for Data + Fitting + Graphing for Model

Tegarden, D. P. (1999). Business Information Visualization. Communicat


Clustering Analysis in Microarray Experiments

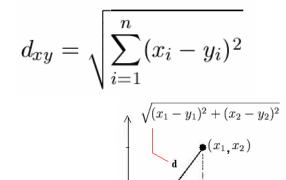
Goals


- Find natural classes in the data
- Identify new classes/gene correlations
- Refine existing taxonomies
- Support biological analysis/discovery
- cluster genes based on samples profiles
- cluster samples based on genes profiles

Hypothesis:

genes with similar function have similar expression profiles.

Distance and Similarity Measure



Pearson Correlation Coefficient

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

$$x = (x_1, x_2, \cdots, x_n)$$
$$y = (y_1, y_2, \cdots, y_n)$$

Euclidean Distance

 (y_1, y_2)

• The standard transformation from a similarity matrix Cto a distance matrix D is given by $d_{rs} = (c_{rr} - 2c_{rs} + c_{ss})^{1/2}$.

• (Eisen *et al.* 1998) $d_{rs} = 1 - c_{rs}$

 Other transformations (Chatfield and Collins 1980, Section 10.2)

More Similarity Measures

Dissimilarity/Similarity Measure for Quantitative Data

Kendall's tau

Two pairs of observation (x_i, y_i) and (x_j, y_j)

- C: concordant pair: $(x_j x_i)(y_j y_i) > 0$
- D: discordant pair: $(x_i x_i)(y_i y_i) < 0$ • tie:

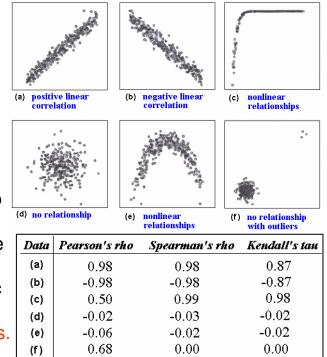
 E_y : extra y pair in x's: $(x_j - x_i) = 0$

$$E_x$$
: extra x pair in y's: $(y_j - y_i) = 0$

$$\tau = \frac{C - D}{\sqrt{C + D - E_y}\sqrt{C + D - E_x}}$$

Pearson's rho measures the strength of a linear relationship [(a), (b)].

Spearman's rho and Kendall's tau measure any monotonic relationship between two variables [(a), (b),(c)].


■ If the relationship between the two variables is non-monotonic, all three correlation coefficients fail to detect the existence of a relationship [(e)].

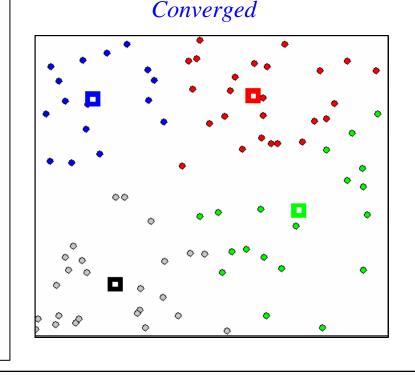
Both Spearman's rho and Kendall's tau are rank-based non-parametric measures of association between variable X and Y.

The rank-based correlation coefficients are more robust against outliers.

Algorithm they use different logic for computing the correlation coefficient, they seldom lead to markedly different conclusions (Siegel and Castellan, 1988).

Similarity	Formula
Pearson correlation	$s(i, j) = \frac{\operatorname{cov}(x_i, x_j)}{\sqrt{\operatorname{var}(x_i) \operatorname{var}(x_j)}}$
Spearman correlation $(r_i \text{ is ranked } x_i)$	$s(i, j) = \frac{\operatorname{cov}(r_i, r_j)}{\sqrt{\operatorname{var}(r_i) \operatorname{var}(r_j)}}$
Kendall's Tau	$s(i, j) = \frac{1}{\binom{p}{2}} \sum_{k \neq k'} sign \left[(x_{ik} - x_{ik'})(x_{jk} - x_{jk'}) \right]$

K-Means Clustering


- K-means is a partition methods for clustering.
- Data are classified into k groups as specified by the user.
- Two different clusters cannot have any objects in common, and the k groups together constitute the full data set.

Optimization problem:

The K-Means Algorithm

- 1. The data points are randomly assigned to one of the K clusters.
- 2. The position of the K centroids are determined (initial group centroids).
- 3. For each data point:
 - Calculate the distance from the data point to each cluster.
 - Assign data point to the cluster that has the closest centroid.
- 4. Repeat the above step until the centroids no longer move.

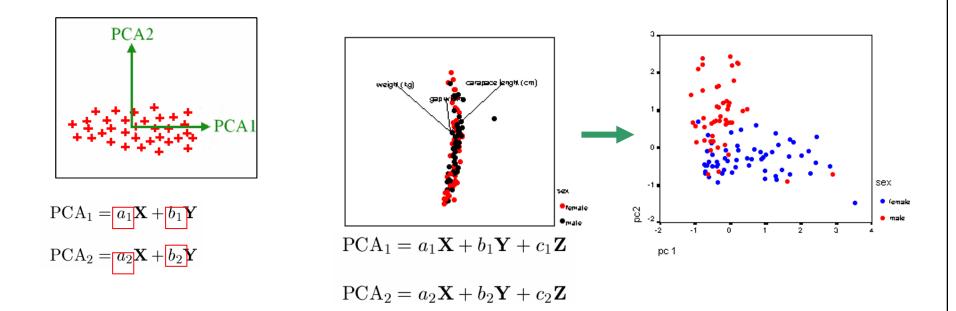
The choice of initial partition can greatly affect the final clusters that result.

Minimize the sum of squared within-cluster distances $W(C) = -\sum_{i=1}^{N} \sum_{j=1}^{N} d_{ij}(x_i, x_j)^2$

Visualizing Clustering Results:

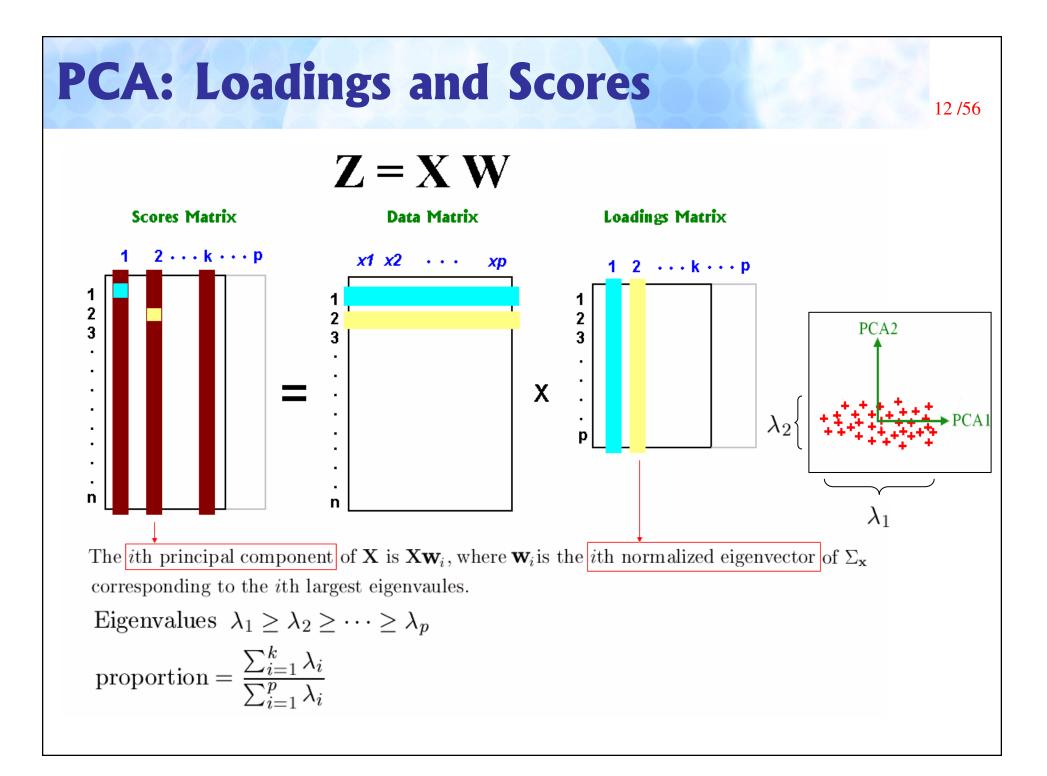
Dimension Reduction Techniques

Principal Component Analysis (PCA)


Multidimensional Scaling (MDS)

Dimension reduction visualization is often adopted for presenting grouping structure for methods such as K-means.

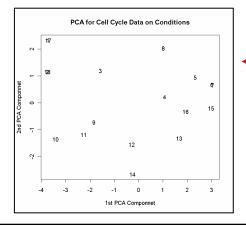
Principal Component Analysis (PCA)


1 /56

PCA is a method that reduces data dimensionality by finding the new variables (major axes, principal components).

Amongst all possible projections, PCA finds the projections so that the maximum amount of information, measured in terms of variability, is retained in the smallest number of dimensions. $PCA_1 = a_{11}X_1 + a_{12}X_2 + \dots + a_{1n}X_n$

$$PCA_1 = a_{11}\mathbf{X}_1 + a_{12}\mathbf{X}_2 + \dots + a_{1p}\mathbf{X}_p$$
$$PCA_2 = a_{21}\mathbf{X}_1 + a_{22}\mathbf{X}_2 + \dots + a_{2p}\mathbf{X}_p$$



PCA (conti.)

Microarray Data Matrix

			_				
MA Table	expO1	expO2	expO3	expO4	exp05	exp∙∙∙	exp P
gene001	-0.48	-0.42	0.87	0.92	0.67		-0.35
gene002	-0.39	-0.58	1.08	1.21	0.52		-0.58
gene003	0.87	0.25	-0.17	0.18	-0.13		-0.13
gene004	1.57	1.03	1.22	0.31	0.16		-1.02
gene005	-1.15	-0.86	1.21	1.62	1.12		-0.44
gene006	0.04	-0.12	0.31	0.16	0.17		0.08
gene007	2.95	0.45	-0.40	-0.66	-0.59		-0.76
gene008	-1.22	-0.74	1.34	1.50	0.63		-0.55
gene009	-0.73	-1.06	-0.79	-0.02	0.16		0.03
gene010	-0.58	-0.40	0.13	0.58	-0.09		-0.45
gene011	-0.50	-0.42	0.66	1.05	0.68		0.01
gene012	-0.86	-0.29	0.42	0.46	0.30		-0.63
gene013	-0.16	0.29	0.17	-0.28	-0.02		-0.04
gene014	-0.36	-0.03	-0.03	-0.08	-0.23		-0.21
gene015	-0.72	-0.85	0.54	1.04	0.84		-0.64
gene016	-0.78	-0.52	0.26	0.20	0.48		0.27
gene017	0.60	-0.55	0.41	0.45	0.18		-1.02
gene018	-0.20	-0.67	0.13	0.10	0.38		0.05
gene019	-2.29	-0.64	0.77	1.60	0.53		-0.38
gene020	-1.46	-0.76	1.08	1.50	0.74		-0.70
gene021	-0.57	0.42	1.03	1.35	0.64		-0.40
gene022	-0.11	0.13	0.41	0.60	0.23		0.19
gene•••							
gene <mark>N</mark>	-1.79	0.94	2.13	1.75	0.23		-0.66

PCA on Genes

MA Table	expO1	expO2	ехрОЗ	expO4	exp05	exp•••	exp P
PCA-1 PCA-2 PCA-3	0.18	0.3	-0.12	-0.44	0.19	-0.39	-0.61
PCA-2_	-0.16	-0.58	-0.43	-0.22	0.53	0.69	0.08
PCA-3_	0.16	-0.44	-0.93	-1.23	-0.62	0.62	1.3

PCA on Conditions

-0.18

0.51

-0.35

-0.18

-0.62

-0.09

-0.38

-0.88

-1.26

0.12

-0.28

-0.45

-0.2

0.03

-0.7

-0.61

-0.23

-0.94

-0.55

-0.47

-0.34

-0.49

-0.15

0.1

MA Table

aene001

gene002

gene003

gene004

gene005

gene006

gene007

gene008

gene009

gene010

gene011

gene012

gene013

gene014

gene015

gene016

gene017

aene018

gene019

gene020

gene021

gene022

gene•••

gene N

PCA-1 PCA-2 PCA-3

-0.11

-0.53

-0.39

-1.08

-0.8

-0.23

-0.32

-0.55

0.45

-0.36

-0.44

-0.23

-0.43

-0.26

-0.76

0.07

-0.71

0.1

-0.97

-0.53

-0.87

-1.1

-0.2

-1.04

-0.03

0.54

0.26

0.41

0.13

0.77

1.08

1.03

0.41

-0.16

2.13

0.82

0.44

-0.68

0.5

-0.04

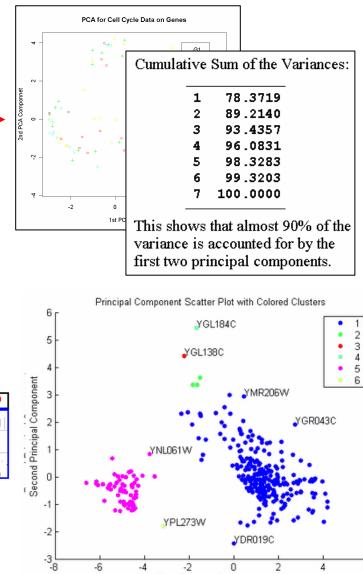
0.01

0.11

0.24

0.86

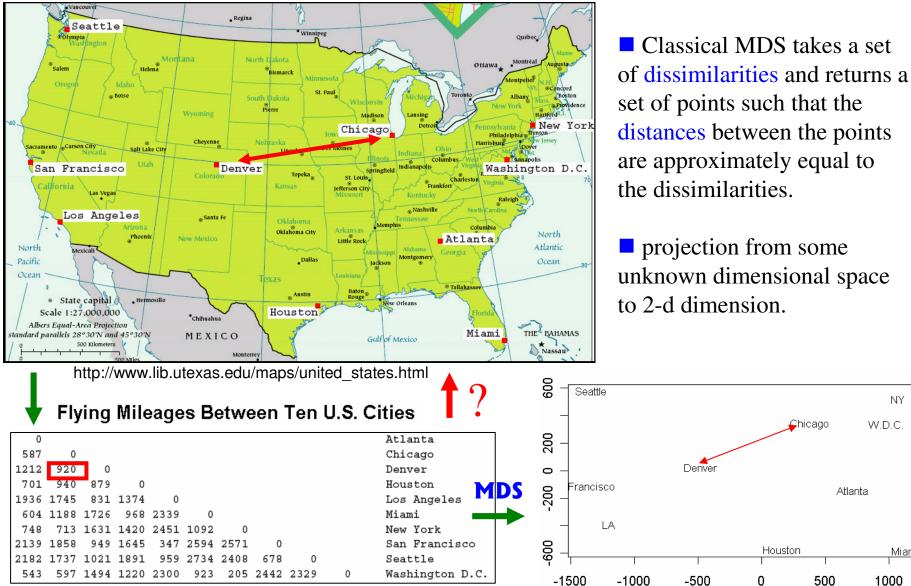
-0.02


0.51

0.91

-0.01

Yeast Microarray Data is from


DeRisi, JL, Iyer, VR, and Brown, PO.(1997). "Exploring the metabolic and genetic control of gene expression on a genomic scale"; Science, Oct 24;278(5338):680-6.

First Principal Component

Multidimensional Scaling (MDS)

(Torgerson 1952; Cox and Cox 2001)

14/56

NΥ

Miami

1000

W.D.C.

Atlanta

500

projection from some unknown dimensional space

⊊hicago

MDS: Metric and Non-Metric Scaling

Question

Given a *dissimilarity matrix* D of certain objects, can we construct points in k-dimensional (often 2-dimensional) space such that

Goal of metric scaling

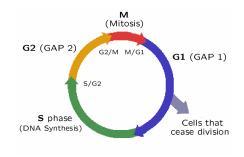
the Euclidean distances between these points approximate the entries in the dissimilarity matrix?

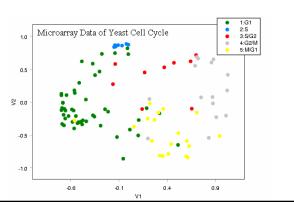
$$S = \sum_{i,j} (\hat{d}_{ij} - d_{ij})^2$$

Mathematically: for given k, compute points x_1, \ldots, x_n in kdimensional space such that the object function is minimized.

Goal of non-metric scaling

the order in distances coincides with the order in the entries of the dissimilarity matrix approximately?


$$Stress = \sqrt{\frac{\sum_{i,j} (\hat{d}_{ij} - d_{ij})^2}{\sum_{i,j} d_{ij}^2}}$$


Microarray Data of Yeast Cell Cycle

Synchronized by alpha factor arrest method (Spellman et al. 1998; Chu et al. 1998)

103 known genes: every 7 minutes and totally 18 time points.

2D MDS Configuration Plot for 103 known genes.

Clustering Analysis and Visualization

Self-Organizing Maps (SOM)

- ♦ Heat Map
- Hierarchical Clustering

QT (Quality Threshold) Clustering

Self-Organizing Maps (SOM)

Table

obs 001

obs 002

obs 003

obs 004

obs 005

obs 006

obs 007

obs 008

obs 009

obs 010

obs 011

obs 012

obs 013

obs ····

obs N

X01

-0.48

-0.39

0.87

1.57

-1.15

0.04

2.95

-1.22

-0.73

-0.58

-0.50

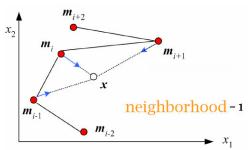
-0.86

-0.16

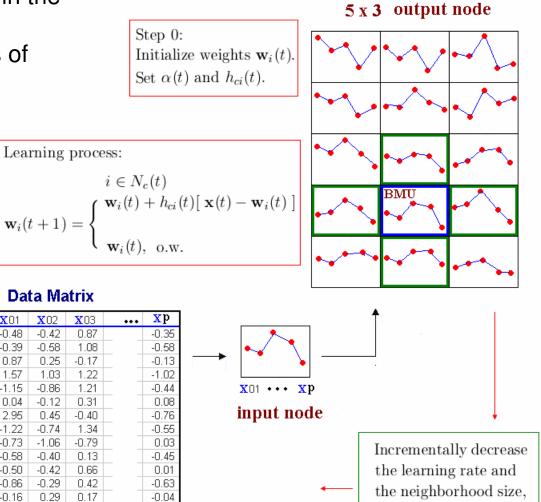
-1.79

X02

-0.74


0.94

2.13


-0.66

SOMs were developed by Kohonen in the early **1980's**, original area was in the area of speech recognition.

Idea: Organise data on the basis of **similarity** by putting entities geometrically close to each other.

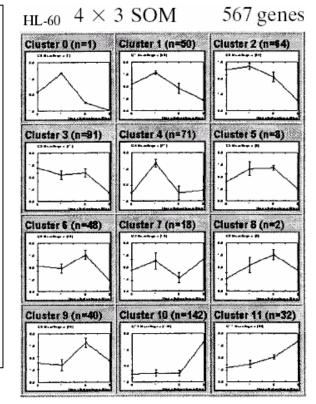
■ SOM is unique in the sense that it combines both aspects. It can be used at the same time both to reduce the amount of data by clustering, and to construct a nonlinear projection of the data onto a low-dimensional display.

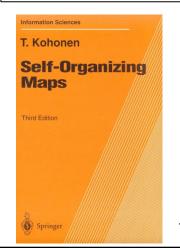
and repeat

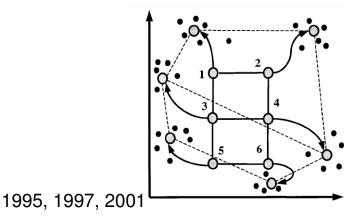
Algorithm of SOM

Step 0: Initialize weights $\mathbf{w}_i(t)$.

Set topological neighborhood parameters $N_c(t)$. Set learning rate parameters $\alpha(t)$ and $h_{ci}(t)$.

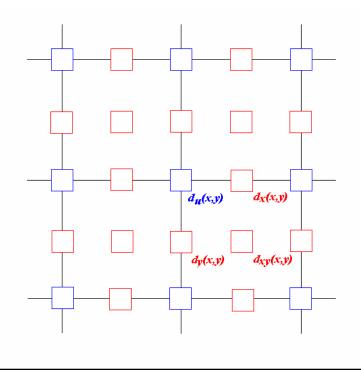

Step 1: For each input vector $\mathbf{x}(t)$, do

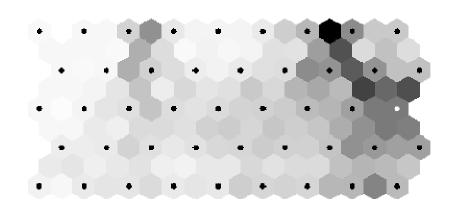

- a. Finding a BMU: $\|\mathbf{x}(t) \mathbf{w}_c(t)\| = \min_i \|\mathbf{x}(t) \mathbf{w}_i(t)\|$
- b. Learning process:


$$\mathbf{w}_{i}(t+1) = \begin{cases} \mathbf{w}_{i}(t) + h_{ci}(t) [\mathbf{x}(t) - \mathbf{w}_{i}(t)], & i \in N_{c}(t) \\ \mathbf{w}_{i}(t), & \text{o.w.} \end{cases}$$

- c. Go to the next unvisited input vector. If there are no unvisited input vector left then go back to the very first one and go to Step 2.
- Step 2: Incrementally decrease the learning rate and the neighborhood size, and repeat Step 1.

Step 3: Keep doing Steps 1 and 2 for a sufficient number of iterations.

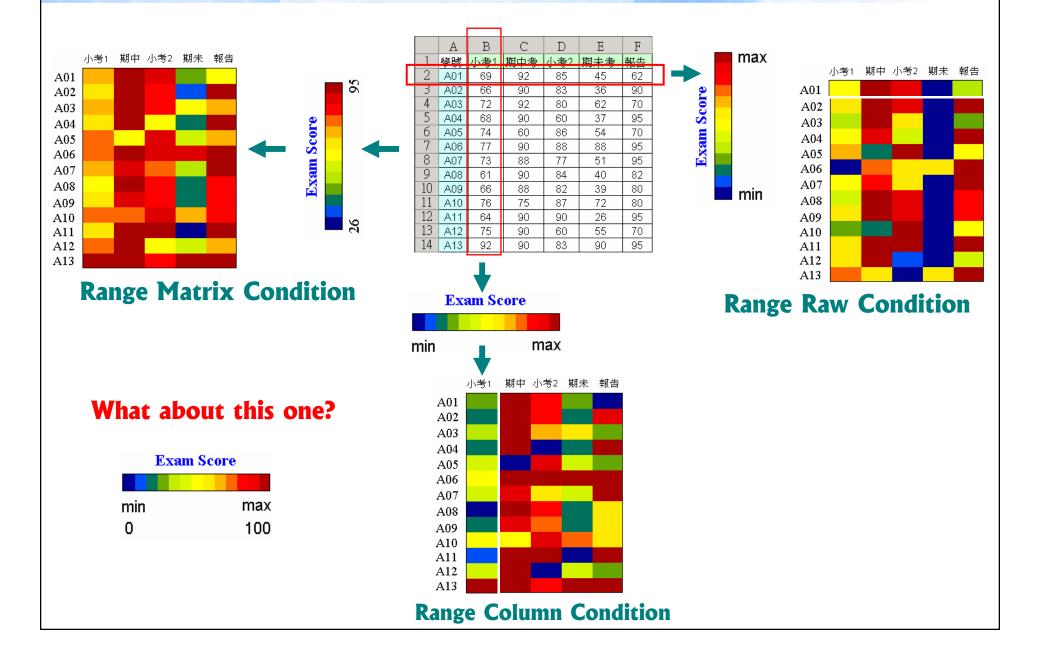

Macrophage Differentiation in HL-60 cells


Tamayo, P. et al. (1999). Interpreting patterns of gene expression with selforganizing maps: Methods and application to hematopoietic differentiation. *Proc Natl Acad Sci* 96:2907-2912.

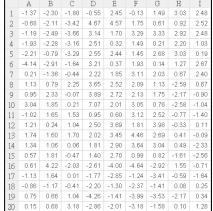
U-matrix: Unified Matrix Method

(Ultsch and Siemon 1989, Ultsch 1993)

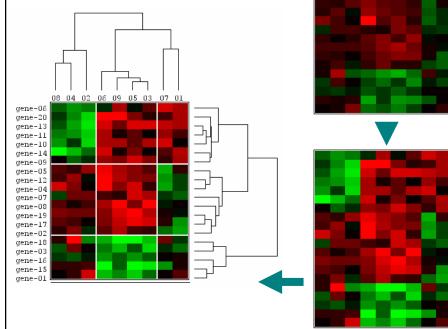
U-matrix representation of SOM visualizes the distance between the neurons. The distance between the adjacent neurons is calculated and presented with different colorings between the adjacent nodes.

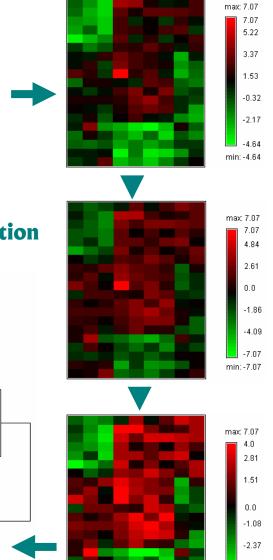


U-matrix representation of the SOM


b(x,y): matrix of neurons, of size $n_x \times n_y$. $w_i(x,y)$: matrix of weights. u(x,y): U-matrix of size $(2n_x - 1) \times (2n_y - 1)$.

$$\begin{aligned} &d_x(x,y) \colon \|b(x,y) - b(x+1,y)\| = \sqrt{\sum_i [w_i(x,y) - w_i(x+1,y)]^2} \\ &d_y(x,y) \colon \|b(x,y) - b(x,y+1)\| = \sqrt{\sum_i [w_i(x,y) - w_i(x,y+1)]^2} \\ &d_{xy}(x,y) \colon \frac{1}{2} [\frac{\|b(x,y) - b(x+1,y+1)\|}{\sqrt{2}} + \frac{\|b(x,y+1) - b(x+1,y)\|}{\sqrt{2}}] \\ &d_u(x,y) \colon \text{the median of the surrounding elements.} \end{aligned}$$

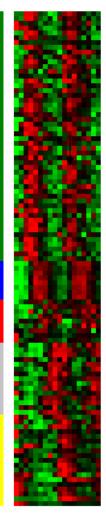

Heat Map: Data Image, Matrix Visualization



Heat Map (conti.)

Center Matrix Condition

Without ordering exp01 02 03 04 05 06 07 08 09 gene-01 gene-02 gene-03 gene-04 gene-05 gene-06 gene-07 gene-08 gene-09 gene-10 gene-11 gene-12 gene-13 gene-14

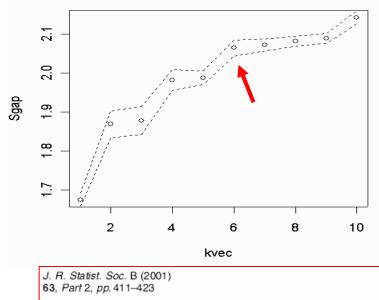

gene-20

-4.0 min: -7.07 Microarray Data of Yeast Cell Cycle

Synchronized by alpha factor arrest method (Spellman et al. 1998; Chu et al. 1998)

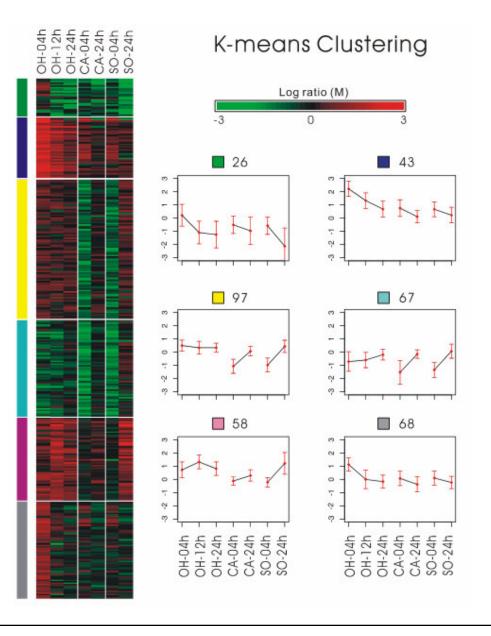
S/G2**103 known genes: every 7** minutes and G2/Mtotally 18 time points.

Gene Expression Down-regulated Upno differential regulated expressed


G1

 \mathbf{S}

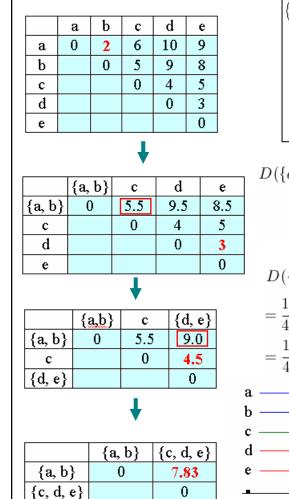
11

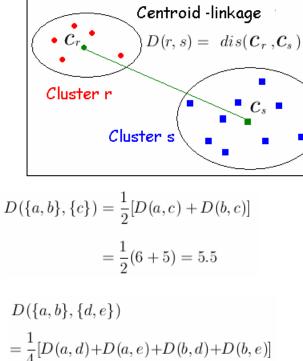

K-Means Clustering

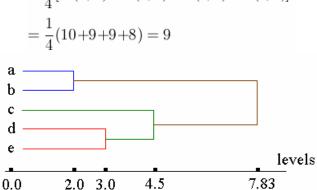
 Data
 Baseline: Culture Medium (CM-00h)
 OH-04h, OH-12h, OH-24h
 CA-04h, CA-24h
 SO-04h, SO-24h

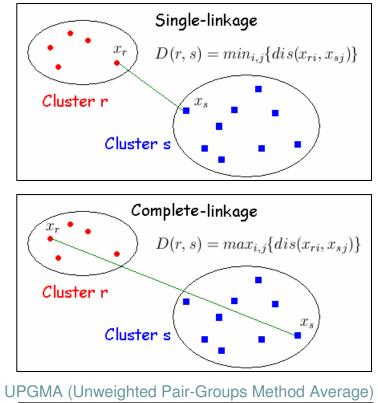
Estimating the number of clusters in a data set via the gap statistic

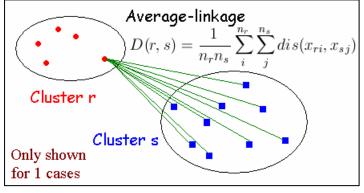
Robert Tibshirani, Guenther Walther and Trevor Hastie Stanford University, USA

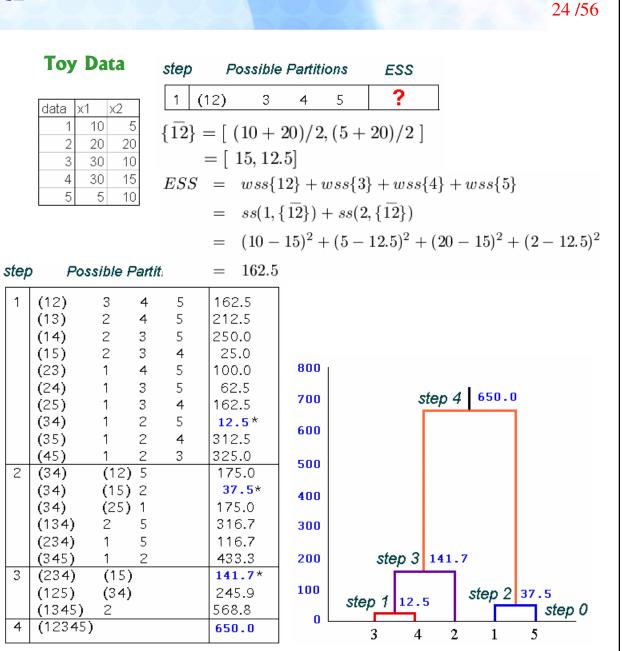

Hierarchical Clustering and Dendrogram

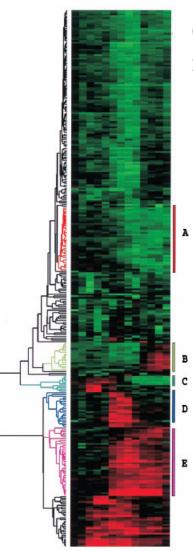

(Kaufman and Rousseeuw, 1990)


Example:


UPGMC (Unweighted Pair-Groups Method Centroid)


Average-Linkage




Ward's Method

- The Ward's method does not compute distances between clusters.
- It forms clusters by maximizing within-clusters homogeneity.
- The within-group (i.e., within-cluster) sum of squares is used as the measure of homogeneity.
- The Ward's method tries to minimize the total withingroup or within-cluster sum of squares.
- Clusters are formed at each step such that the resulting cluster solution has the fewest withincluster sums of squares.
- The within-cluster sums of squares that is minimized is also known as the error sums of squares (ESS).

Example: Charles H. Romesburg (1984)

Display of Genome-Wide Expression Patterns

Proc. Natl. Acad. Sci. USA Vol. 95, pp. 14863–14868, December 1998 Genetics

Cluster analysis and display of genome-wide expression patterns

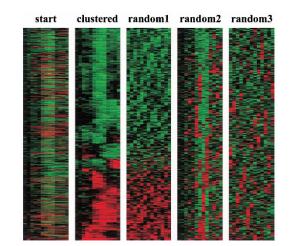
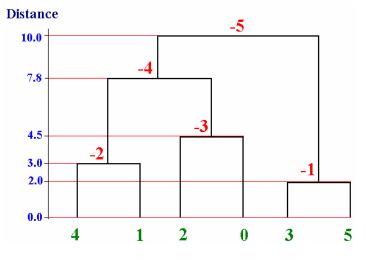

MICHAEL B. EISEN*, PAUL T. SPELLMAN*, PATRICK O. BROWN[†], AND DAVID BOTSTEIN*[‡]

FIG. 1. Clustered display of data from time course of serum stimulation of primary human fibroblasts. Experimental details are described elsewhere (11). Briefly, foreskin fibroblasts were grown in culture and were deprived of serum for 48 hr. Serum was added back and samples taken at time 0, 15 min, 30 min, 1 hr, 2 hr, 3 hr, 4 hr, 8 hr, 12 hr, 16 hr, 20 hr, 24 hr. The final datapoint was from a separate unsynchronized sample. Data were measured by using a cDNA microarray with elements representing approximately 8,600 distinct

human genes. All measurements are relative to time 0. Genes were selected for this analysis if their expression level deviated from time 0 by at least a factor of 3.0 in at least 2 time points. The dendrogram and colored image were produced as described in the text; the color scale ranges from saturated green for log ratios -3.0 and below to saturated red for log ratios 3.0 and above. Each gene is represented by a single row of colored boxes; each time point is represented by a single column. Five separate clusters are indicated by colored bars and by identical coloring of the corresponding region of the dendrogram. As described in detail in ref. 11, the sequence-verified named genes in these clusters contain multiple genes involved in (A) cholesterol biosynthesis, (B) the cell cycle, (C) the immediate-early response, (D)signaling and angiogenesis, and (E) wound healing and tissue remodeling. These clusters also contain named genes not involved in these processes and numerous uncharacterized genes. A larger version of this image, with gene names, is available at http://rana.stanford.edu/ clustering/serum.html.

Software: Cluster and TreeView

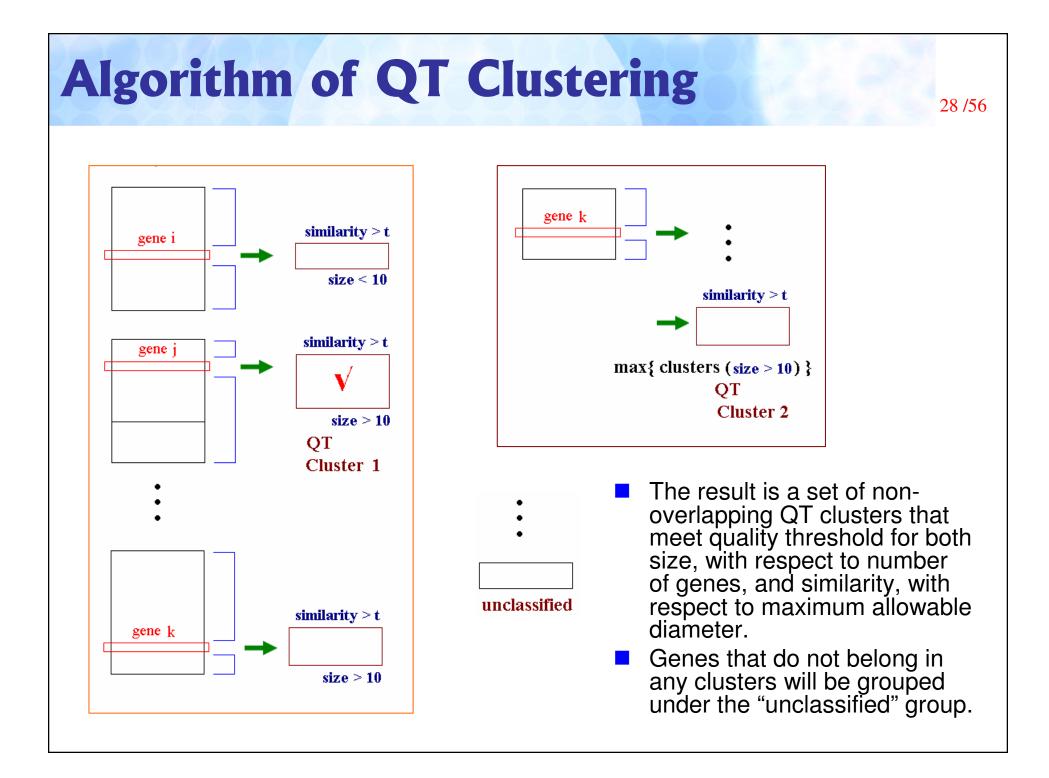

FIG. 3. To demonstrate the biological origins of patterns seen in Figs. 1 and 2, data from Fig. 1 were clustered by using methods described here before and after random permutation within rows (random 1), within columns (random 2), and both (random 3).

Dendrogram and Tree Storage

conditions

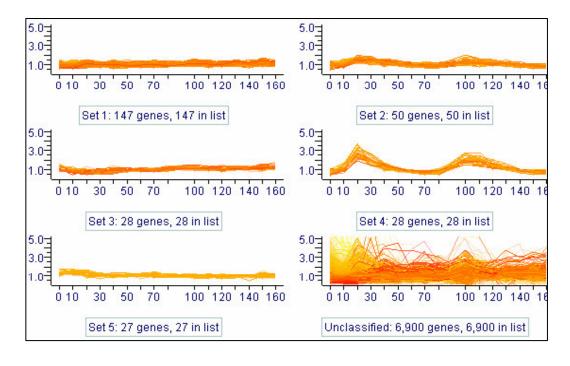
10 3 0 Ŷ genes ŝ 0 4 -4 \mathbf{A} Distance 10.0 4.5-3.0-2.0-0.0 3.8

no	NodeID	Left	Right	Distance
0	-1	3	5	2
1	-2	4	1	3
2	-3	2	0	4.5
3	-4	-2	-3	7.8
4	-5	-4	-1	10


QT (Quality Threshold) Clustering

27 /56

GeneSpring GX v7.3


Clustering	
Gene Lists Gene Lists Simplified Gene (Simplified Gene (Simplified Gene (Genes differentia Genes with statis Feliable genes Experiments P: 24 HOUR COW Genes Utherpr Complete Complete Comp	Choose Gene List >> 1-Way ANOVA (592 genes) Choose Experiment >> P: 24 HOUR COMPOUND STUDY Add/Remove K-means Gene Tree Condition Tree Self-Organizing Map QT Clustering Minimum Cluster Size: 10 Minimum Correlation: 0.98 Similarity Measure: Standard Correlation Image: Condition Defaults Defaults
•	Computation Preferences Compute locally Compute on a GeNet RemoteServer Progress: Local run time estimate: A few minutes Start Close Help

- Minimum Cluster Size: Minimum number of genes that you would like to have in each cluster.
- Minimum Correlation: Minimum correlation that genes within each cluster must have to one another.
- The diameter is the equivalent of 1 minus the minimum correlation.

Interpreting the Results

- QT Clusters are displayed according to the cluster size, from the largest to the smallest.
- Set 1 is the largest cluster, followed by set 2, etc...
- All sets will have at least the user-defined minimum cluster size and the minimum correlation (diameter).
- For example, all 147 genes in Set 1 below are at least 0.98 correlated to each other.
- Genes that did not meet the minimum quality are grouped under the "unclassified" category.

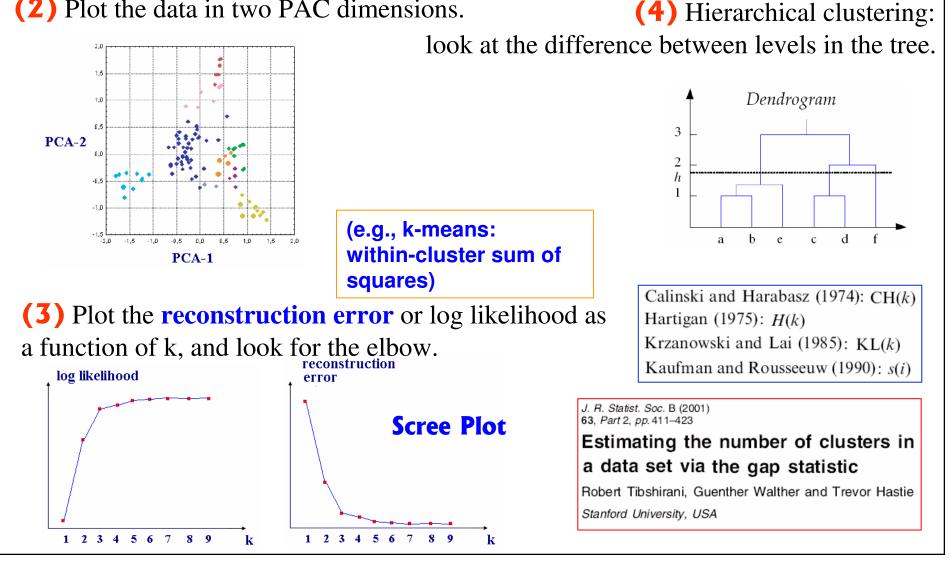
QT Clustering (conti.)

Advantages

- Quality Guarantee
- Number of clusters is not specified a priori
- All possible clusters are considered

Disadvantages

Computationally Intensive/Time Consuming

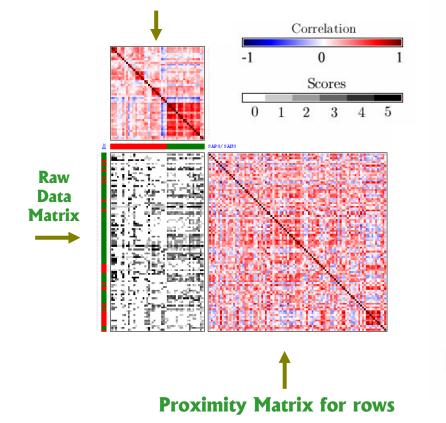

Main differences between QT clustering and K-means clustering?

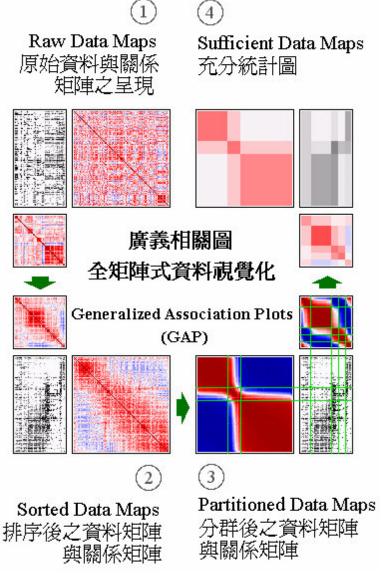
	K-means	QT clustering	Consequence
Need to specify cluster number?	Yes	No	K-means: if users specify too few clusters, genes that are not similar will be forced to group together.
Very computationally intensive?	No	Yes	QT clustering: may be too computationally intensive, depending on available RAM and number of genes in starting gene list, for some desktop computer.
Every gene must be clustered?	Yes	No	K-means: every gene on the selected gene list must belong to a cluster. This could potentially group genes that are not very similar into the same cluster. QT clustering: only cluster with user-specified quality will be formed.

Choosing the Number of Clusters

(1) K is defined by the application.

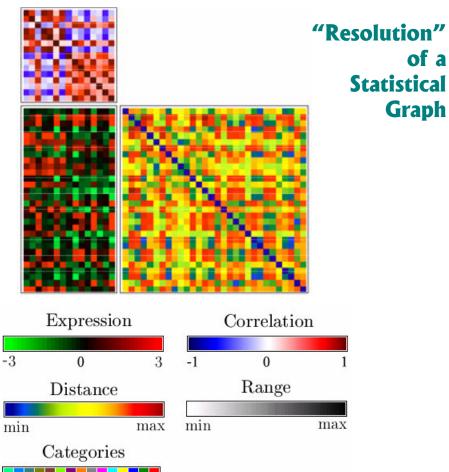
(2) Plot the data in two PAC dimensions.

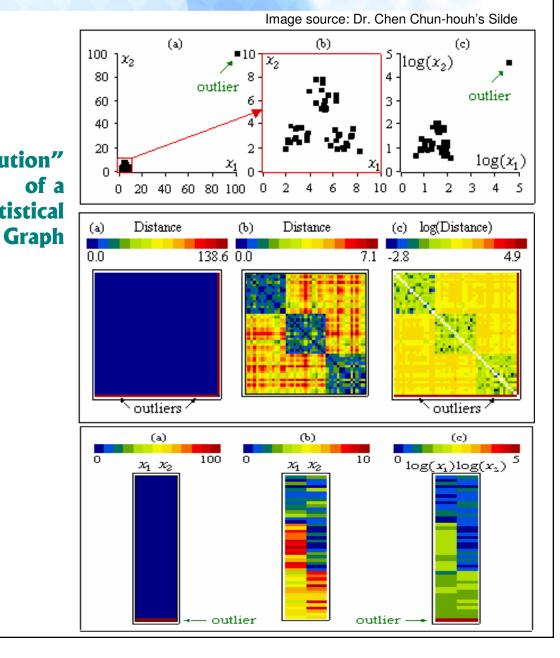

Generalized Association Plots (GAP)


32 /56

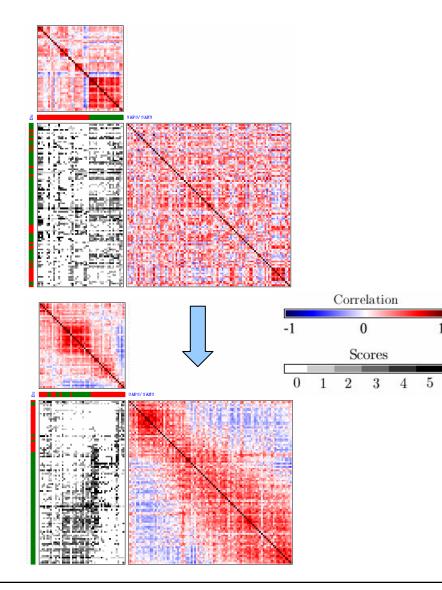
(Chen, 2002)

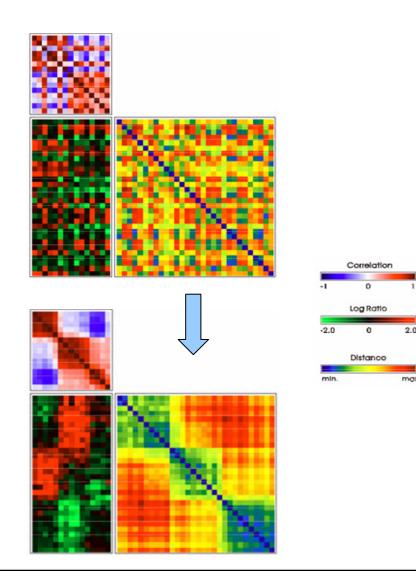
- 95 patients: 69 schizophrenic and 26 bipolar disorders
- SAPS: 30 items, SANS: 20 items
- Six point scale (0-5).


Proximity Matrix for columnss



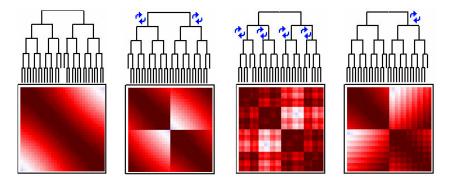
Presentation of Raw Data Matrix


- 1. Color spectrum
- 2. Variable transformation
- 3. Selection of proximity

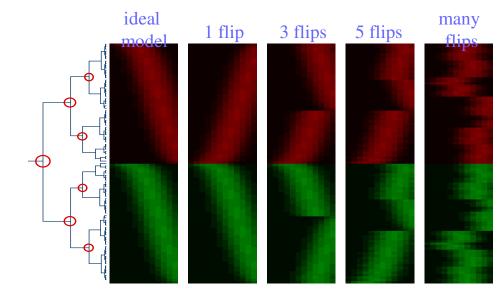


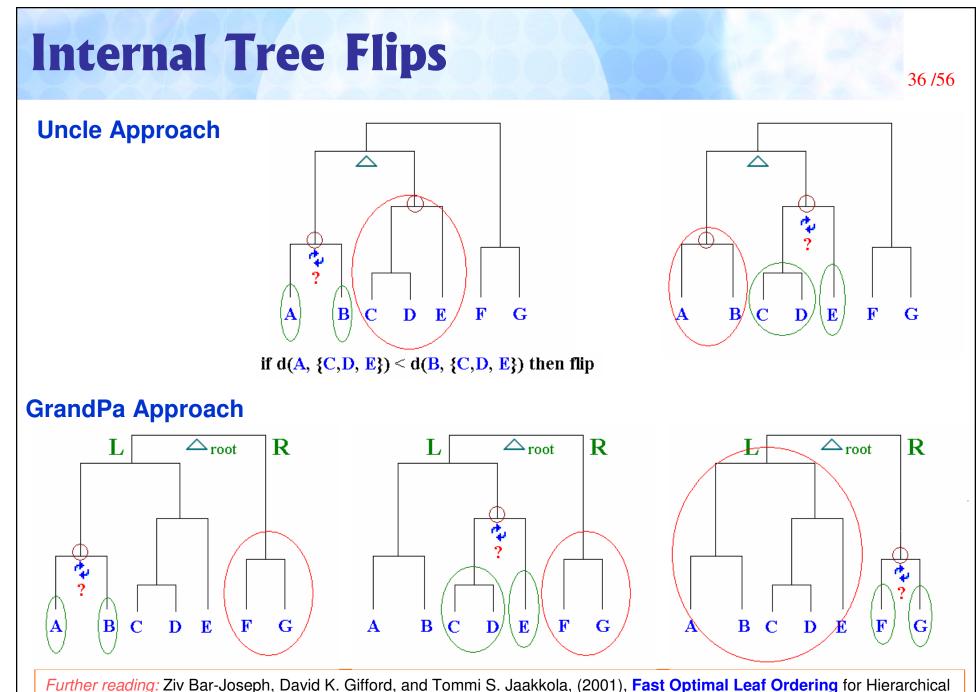
Concept of Relativity of a Statistical Graph

Placing similar (different) objects at closer (distant) positions

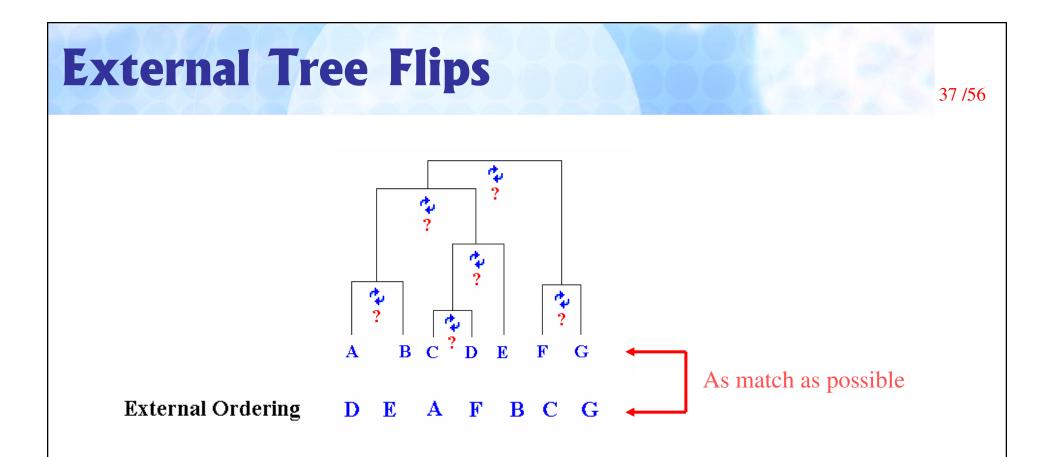


Seriation Problem for Hierarchical Clustering


Tree seriation for proximity matrices

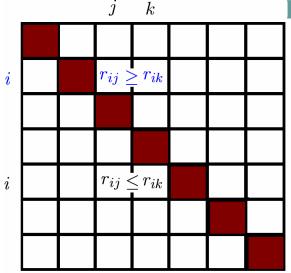

35/56

Different Seriations Generated from Identical Tree Structure

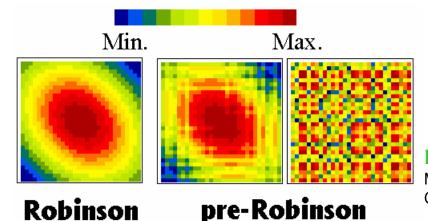


Tree seriation for raw data matrices

Clustering. Bioinformatics 17(Suppl. 1):S22-S29.


How to build an external ordering?

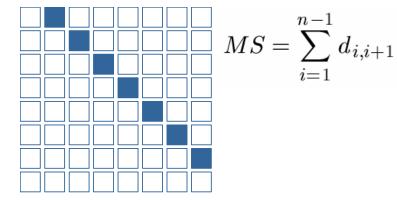
(1) Based on average expression level (Cluster Software, Eisen et al 1998)
(2) Using the results of a one-dimensional SOM
(3) ...


Further reading: Tien, Y. J., Lee, Y. S, Wu, H. M. and Chen, C. H. (2006) Integration of clustering and visualization methods for simultaneously identifying coherent local clusters with smooth global patterns in gene expression profiles.

Criteria for a "good" Permutation

When T is symmetric, we usually want T' to approximate a Robinson form (Robinson (1951)).

 $r_{ij} \leq r_{ik}$ if j < k < i, $r_{ij} \geq r_{ik}$ if i < j < k

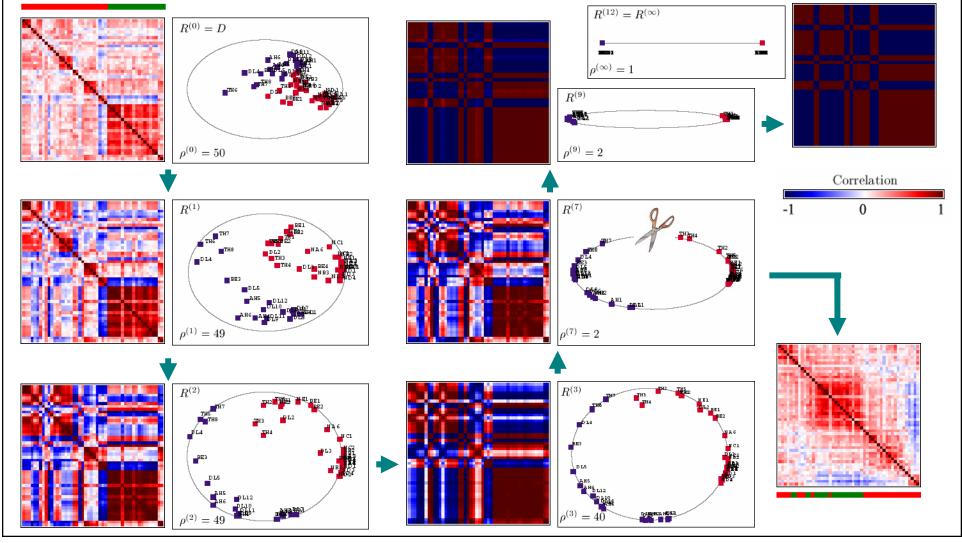

Robinson Form

Global/local Criterion: Anti-Robinson Measurements

permuted matrix, $D = [d_{ij}]$

$$\begin{aligned} AR(i) &= \sum_{i=1}^{p} \Big[\sum_{j < k < i} I(d_{ij} < d_{ik}) + \sum_{i < j < k} I(d_{ij} > d_{ik}) \Big], \\ AR(s) &= \sum_{i=1}^{p} \Big[\sum_{j < k < i} I(d_{ij} < d_{ik}) \cdot |d_{ij} - d_{ik}| + \sum_{i < j < k} I(d_{ij} > d_{ik}) \cdot |d_{ij} - d_{ik}| \Big], \\ AR(w) &= \sum_{i=1}^{p} \Big[\sum_{j < k < i} I(d_{ij} < d_{ik}) |j - k| |d_{ij} - d_{ik}| + \sum_{i < j < k} I(d_{ij} > d_{ik}) |j - k| |d_{ij} - d_{ik}| \Big]. \end{aligned}$$

Local criterion: Minimal Span Loss Function

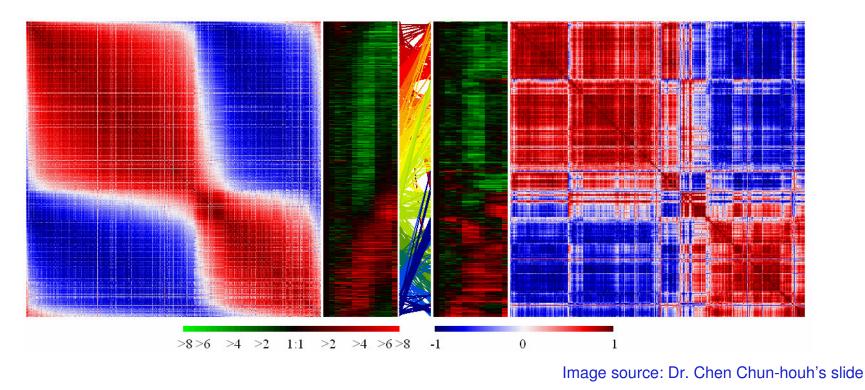


Further Reading

Michael Friendly, Ernest Kwan, (2003) Effect ordering for data displays, Computational Statistics & Data Analysis, v.43 n.4, p.509-539.

GAP Rank-Two Elliptical Seriation

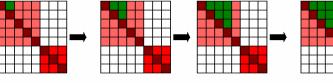
- Seriation Algorithms with Converging Correlation Matrices
- When the sequence reaches an iteration with rank two, the p objects fall on an ellipse and have unique relative position on the ellipse.

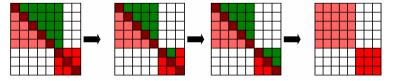

Global vs Local Seriation

GAP Elliptical Seriation

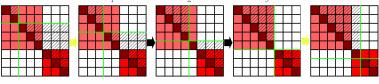
An algorithm for identifying global clustering patterns and smoothing temporal expression profiles

GAP Elliptical Seriation

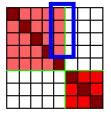


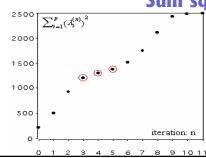


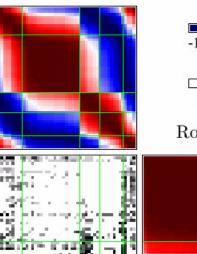
Partitions of Permuted Matrix Maps

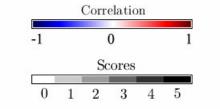

41/56

One-Way block Searching

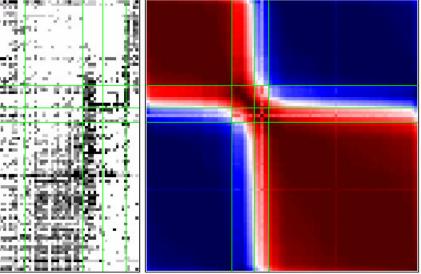



Within-Sum-of-Square Approach



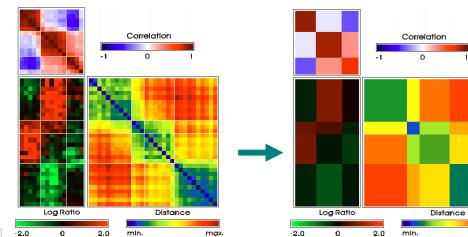


Two-Sample Problem



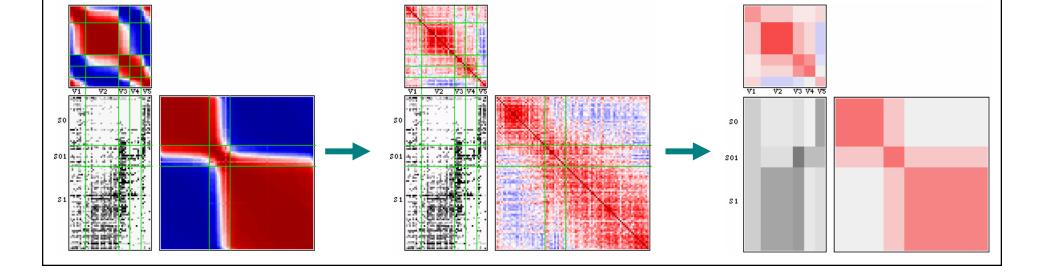
Row: $R^{(3)}$, Column: $R^{(4)}$

Sum squared eigenvalues (sum squared correlations)


Further Reading

J. A. Hartigan. Direct clustering of a data matrix. Journal of the American Statistical Association, 67(337):123-129, March 1972. Duffy, D. & Quiroz, A. (1991), `A permutation-based algorithm for block clustering', J. of Classification 8, 65--91.

Sufficient Graph


	Α	В	С	D	E	F	
1	學號	小考1	期中考	小考2	期未考	報告	
2	A01	69	92	85	45	62	
3	A02	66	90	83	36	90	
4	A03	72	92	80	62	70	
5	A04	68	90	60	37	95	
б	A05	74	60	86	54	70	
- 7	A06	77	90	88	88	95	
8	A07	73	88	77	51	95	
9	A08	61	90	84	40	82	
10	A09	66	88	82	39	80	
11	A10	76	75	87	72	80	C
12	A11	64	90	90	26	95	Sufficien
13	A12	75	90	60	55	70	
14	A13	92	90	83	90	95	Statistic

		小考1	期中考	小考2	期未考	報告
	平均	71.77	86.54	80.38	53.46	83
70	低平均	65.67	81.83	73.67	53.67	72
	高平均	77.83	90.67	86.67	53.67	94.17

42/56

max.

Generalization and Flexibility

Sedimented MV for patients and symptoms.

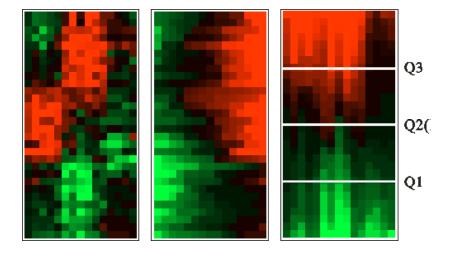
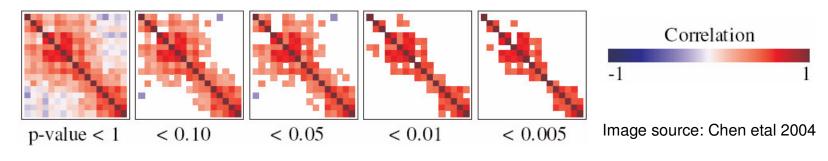
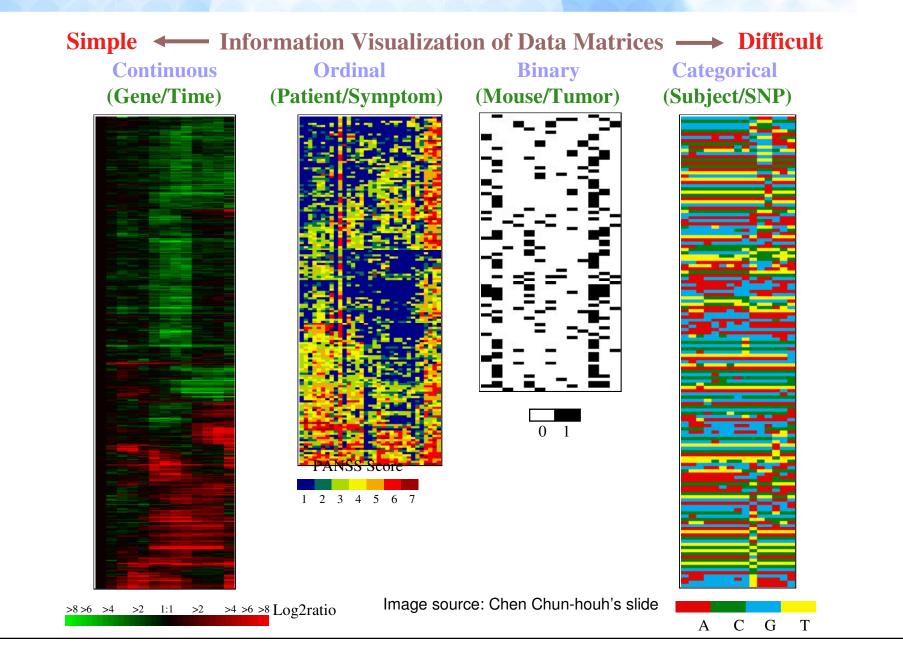
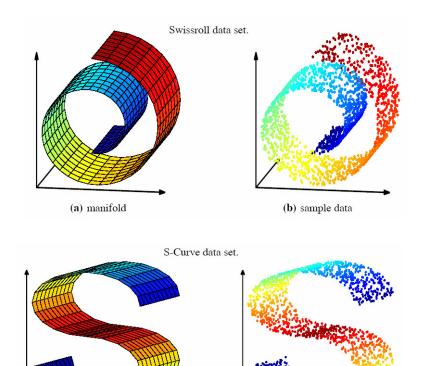



Image source: Chen etal 2004

The sediment MV for patients: express severity structure.


The sediment MV for symptoms: this is a side-by-side bar-chart and box-plot which displays the distribution structure for all symptoms simultaneously.

Sectional MV for the permuted correlation coefficient map.


Visualization of Data Matrices

Concept of Manifolds and Nonlinearity

- A manifold is a topological space which is locally Euclidean. (i.e., around every point, there is a neighborhood that is topologically the same as the open unit ball in).
- In general, any object which is nearly "flat" on small scales is a manifold.
- Euclidean space is a simplest example of a manifold.
- More formally, any object that can be "charted" is a manifold.
- Intuitively, a manifold can be considered as a ``nice" topological space that behaves at every point like our intuitive notion of a surface
- Manifolds arise naturally whenever there is a smooth variation of parameters [like pose of the face]
- The dimension of a manifold is the minimum integer number of co-ordinates necessary to identify each point in that manifold.

(b) sample data

(a) manifold

Isometric Mapping (isomap)

Isomap finds the projection that preserves the global, nonlinear geometry of the data by preserving the geodesic manifold interpoint distances.

- For neighboring points Euclidean distance is a good approximation to the geodesic distance.

- For farway points estimate the distance by a series of short hops between neighboring points.

- Find shortest paths in a graph with edges connecting neighboring data points.

- Once we have all pairwise geodesic distances use classical metric MDS

Algorithm of Isomap (Tenenbaum et al., 2000)

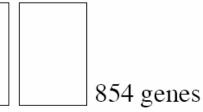
- 1. Calculate the distance $d_X(i,j)$ between all pairs i,j from n data points in the p-dimensional input space.
- 2. Construct the graph by determining the neighbors for each data point with $\epsilon\text{-Isomap}$ or k-Isomap.
- 3. Pursue the shortest paths in the graph G. Initialize $d_G(i, j) = d_X(i, j)$ if i, j are neighbors; otherwise, set $d_G(i, j) = \infty$. For each value of $l = 1, 2, \dots, n$ and for all $i, j, d_G(i, j)$ are replaced by min $\{d_G(i, j), d_G(i, l) + d_G(l, j)\}$.
- 4. Apply classical MDS to D_G .

What is important is the geodesic distance!

Tenenbaum , J. B., Silva, V. de, and Langford, J. C. (2000). A Global Geometric Framework for Nonlinear Dimensionality Reduction, Science 290, 2319-2323.

Example

47 /56


Vol. 20 no. 6 2004, pages 874-880

DOI: 10.1093/bioinformatics/bta496

lymphoma dataset

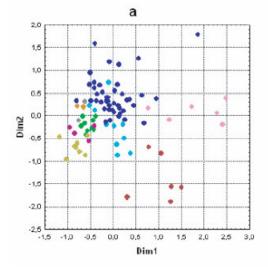
Alizadeh et al. (2000)

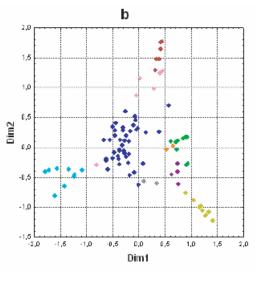
96 samples

9 diagnostic classes

defined by Alizadeh et al. (2000).

BIOINFORMATICS




Approximate geodesic distances reveal biologically relevant structures in microarray data

Jens Nilsson^{1,*}, Thoas Fioretos², Mattias Höglund² and Magnus Fontes¹

¹Centre for Mathematical Sciences, Lund University, Box 118, SE-221 00 Lund, Sweden and ²Department of Clinical Genetics, Lund University Hospital, SE-221 85 Lund, Sweden

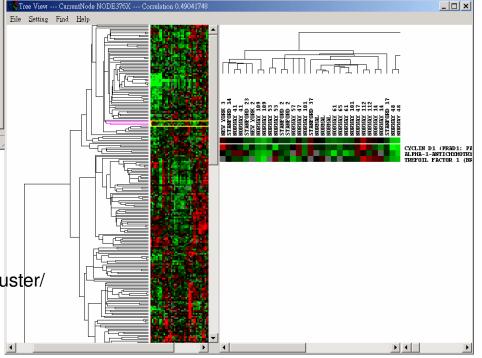
- DLBCL
- Germinal Centre B
- NI Lymph Node/Tonsil
- Activated blood B
- Resting/activated T
- Transformed cell lines
- Follicular lymphoma
 Resting blood B
- Resting
 CLL

Software

Cluster and TreeView

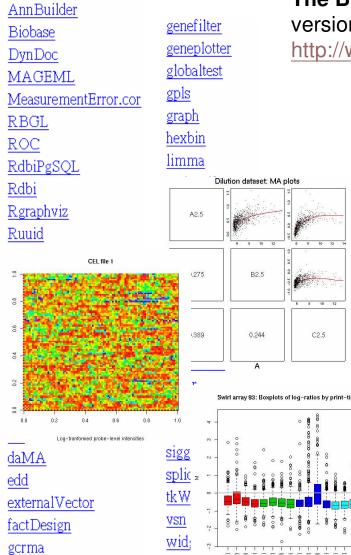
- Bioconductor: Limma, LimmaGUI, LimmaAffy, gclus
- PermutMatrix
- GAP (Generalized Association Plots)

GeneSpring GX v7.3


Cluster and TreeView

🦉 Gene Cluster	×
About	-
File Loaded trad-alpha-data Load File File Format Help	
	http:
Job Name trad-alpha-data	Eise
Read Manual Dataset has 20 Columns Save	Bots
	disp
Filter Data Adjust Data Hierarchical Clustering K Means Clustering Self Organizing Maps PCA	patte
	95(2
Filter Genes	Tree View CurrentNo
□ SD (Gene Vector) >= 2	Eile Setting Find Hel
At least At least Deservations abs(Val) >= 2	
□ MaxVal - MinVal >= 2	
Done Clustering	
De Hoon, M.J.L.; Imoto, S.; Nolan, J.; Miyano,	
S.; "Open source clustering software".	,
Bioinformatics, 20 (9): 14531454 (2004)	
http://bonsai.ims.u-tokyo.ac.jp/~mdehoon/software/cl	uster/

http://rana.lbl.gov/EisenSoftware.htm


Eisen MB, Spellman PT, Brown PO, Botstein D. (1998) **Cluster analysis and display of genome-wide expression patterns**. *Proc Natl Acad Sci.* 95(25):14863-8.

Bioconductor

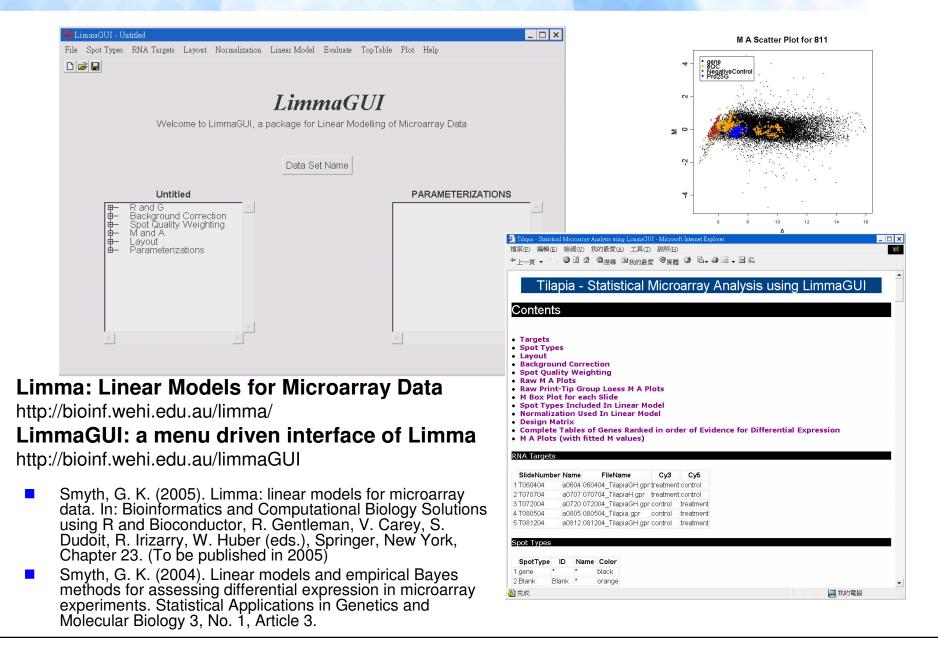
50/56

Package

The Bioconductor version 1.6

C2.5

http://www.bioconductor.org

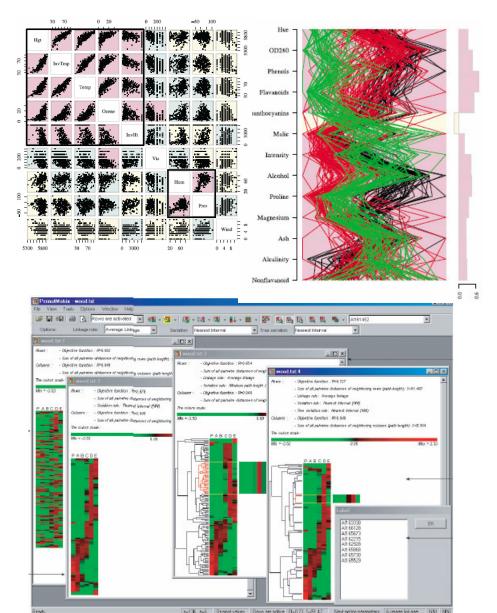


The R Project for Statistical Computing

R version 2.1.1 (2005-06-20) http://www.r-project.org

Eile Edit Misc Packages Windows Help Load package Load package(s) from CRAN You are weld Install package(s) from CRAN Type 'licens Install package(s) from local zip files	r certain conditions. tribution details.
R is a colle Type 'contr. 'citation() Update package(s) from Bioconductor Update package(s) from Bioconductor	CO CO CO AnnBuilder
Type 'demo()' for some demos, 'help' 'help.start()' for a HTML browser in Type 'q()' to quit R. [Previously saved workspace restored	iterfa RBGL ROC RdbiPgSQL Rdbi Rumid
>	affyPLM affy affycomp affydata annaffy annotate
◀ R 1.8.1 - A Language and Environment	OKCancel

Limma, LimmaGUI, LimmaAffy


Gclus, PermutMatrix

gclus: Clustering Graphics

(R package)

http://cran.r-project.org/src/contrib/Descriptions/gclus.html

Catherine B. Hurley, (2004), Clustering Visualizations of Multidimensional Data, Journal of Computational & Graphical Statistics, Vol. 13, No. 4, pp.788-806

52/56

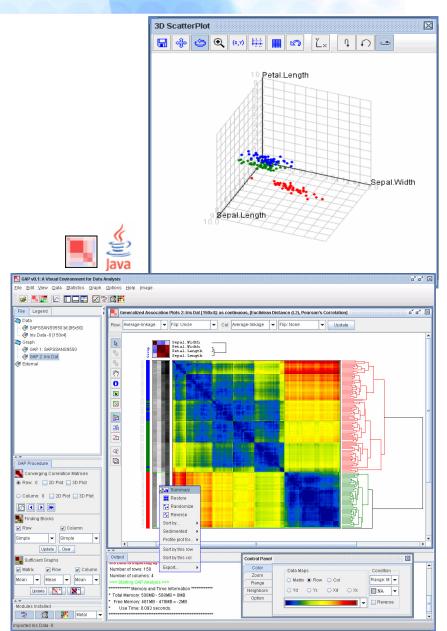
PermutMatrix

http://www.lirmm.fr/~caraux/PermutMatrix Caraux, G., and Pinloche, S. (2005), "Permutmatrix: A Graphical Environment to Arrange Gene Expression Profiles in Optimal Linear Order," Bioinformatics, 21, 1280-1281.

GAP (Generalized Association Plots)

Generalized Association Plots

- Input Data Type: continuous or binary.
- Various seriation algorithms and clustering analysis.
- Various display conditions.
- GAP with Covaraite Adjusted, Nonlinear Association Analysis, Missing Value Imputation.


Statistical Plots

 2D Scatterplot, 3D Scatterplot (Rotatable)

Web Site

http://gap.stat.sinica.edu.tw/Software/GAP

Chen, C. H. (2002). Generalized Association Plots: Information Visualization via Iteratively Generated Correlation Matrices. Statistica Sinica 12, 7-29. Wu, H. M., Tien, Y. J. and Chen, C. H. (2006). GAP: a Graphical Environment for Matrix Visualization and Information Mining.

Matlab: Bioinformatics ToolBox

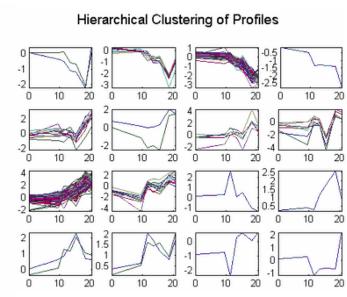
54/56

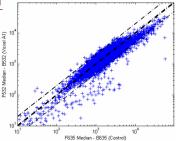
2500

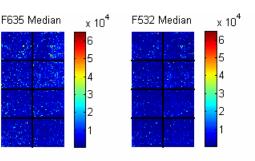
2000

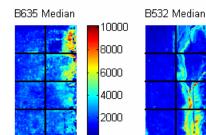
1500

1000

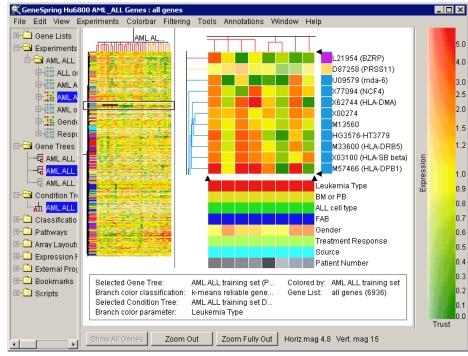

500

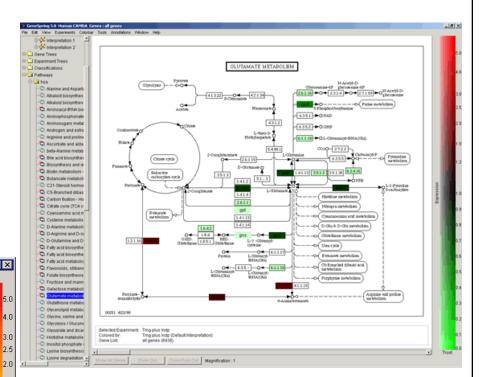

AThe MathWorks


Bioinformatics Toolbox


http://www.mathworks.com/access/helpdesk/help/toolbox/bioinfo/index.html

- <u>Data Formats and Databases</u> Access online databases, read and write to files with standard genome and proteome formats such as FASTA and PDB.
- <u>Sequence Alignments</u> Compare nucleotide or amino acid sequences using pairwise and multiple sequence alignment functions.
- <u>Sequence Utilities and Statistics</u> Manipulate sequences and determine physical, chemical, and biological characteristics.
- <u>Microarray Analysis</u> Read, filter, normalize, and visualize microarray data.
- Protein Structure Analysis Determine protein characteristics and simulate enzyme cleavage reactions.
- <u>Prototype and Development Environment</u> Create new algorithms, try new ideas, and compare alternatives.
- Share Algorithms and Deploy Applications Create GUIs and stand-alone applications.

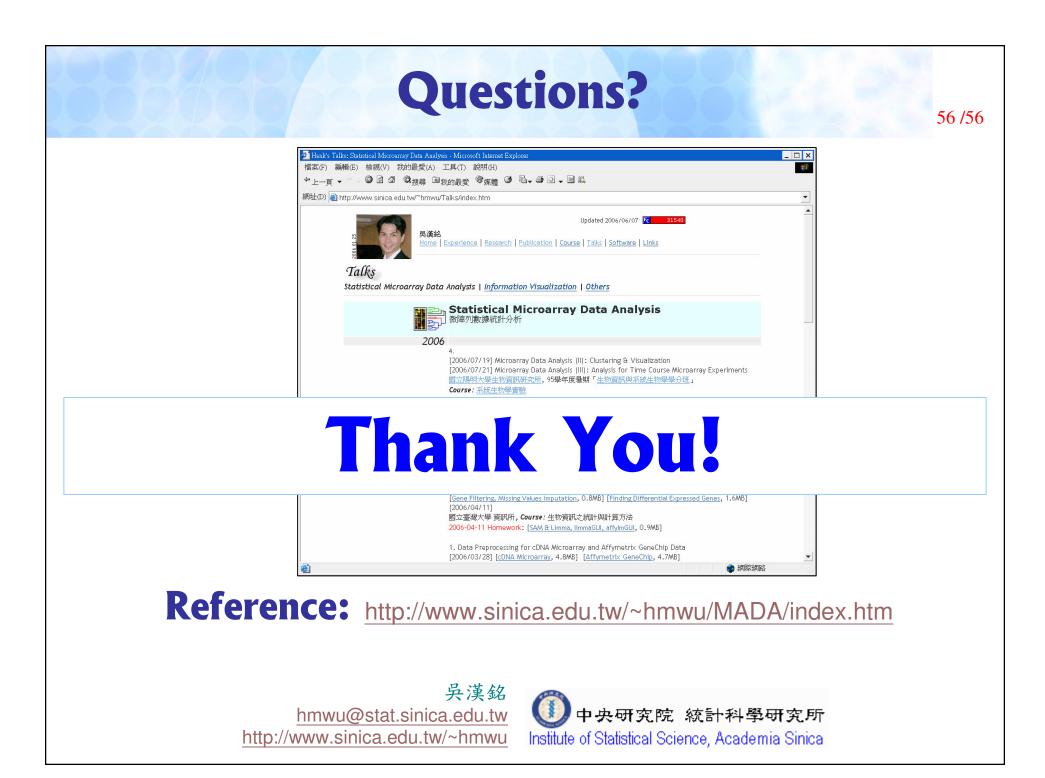




GeneSpring GX v7.3

55 /56

- RMA or GC-RMA probe level analysis
- Advanced Statistical Tools
- Data Clustering
- Visual Filtering
- 3D Data Visualization
- Data Normalization (Sixteen)
- Pathway Views
- Search for Similar Samples
- Support for MIAME Compliance
- Scripting
- MAGE-ML Export


Images from http://www.silicongenetics.com

2004 Articles Citing GeneSpring®

2004 : 2003 : 2002 : 2001 : pre-2001 : Reviews

More than 700 papers

