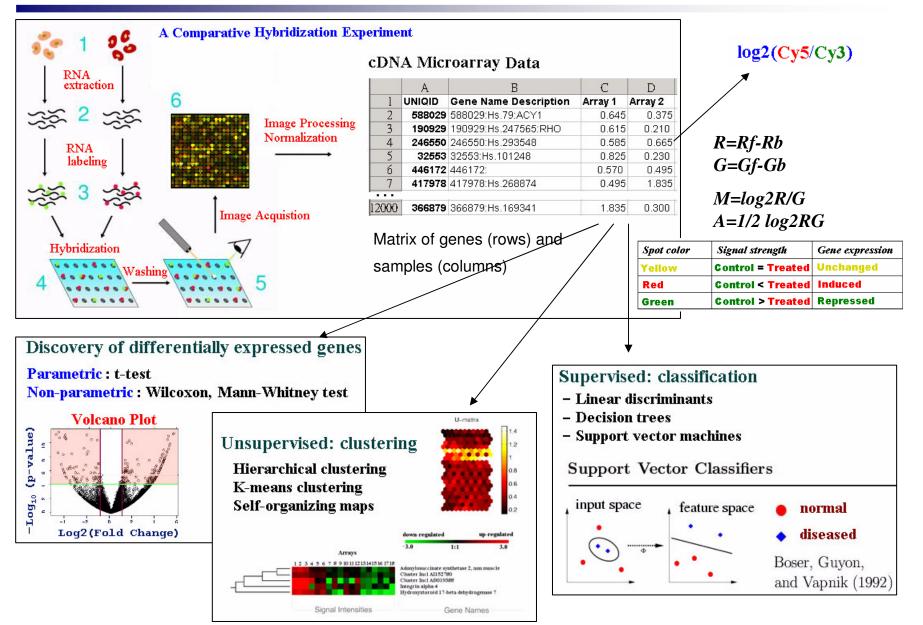
Microarray Data Preprocessing cDNA Spotted Microarray

國立臺灣大學 資訊所

Course: 生物資訊之統計與計算方法 2006/03/28

异漢銘 hmwu@stat.sinica.edu.tw http://www.sinica.edu.tw/~hmwu/

> Institute of Statistical Science, Academia Sinica 中央研究院 統計科學研究所



Overview **Biological Questions Image Processing** 1. Differentially expressed Addressing genes 2. Relationships between Segmentation genes, tissues or treatments Information extraction **Biological** 3. Classification of tissues Verification and and samples Interpretation **Diagnostic Plots** 🏷 Experimental Design Box plots, Histogram Array plot, MA plot Microarray Experiment 1. Target preparation Normalization 2. Hybridization **Statistical** 3. Washing Analysis Within-slides 4. Image acquisition . Estimation **Between-slides** " Testing Preprocessing " Clustering Dye-swap ... Classification Image Analysis Quantify Expr Normalization **Image Analysis** Quality = Gene network **Quantify Expression** Filtering ... Missing Values Software - HILL

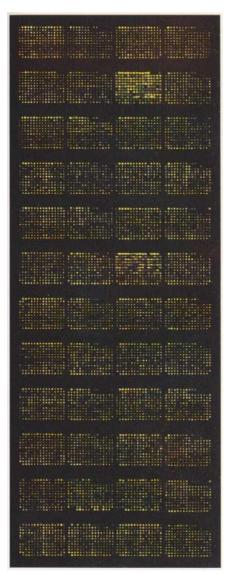
Microarray Life Cycle

An Example Image of a Complete Microarray

Probe: DNA spotted on the array, immobile substrate.

Target: DNA hybridized to the array, mobile substrate.

Sector: collection of spots printed using the same print-tip (or pin), printtip-group, pin-group, spot matrix, grid. **Batch:** collection of slides with the same probe layout.


The terms slide or array are often used to refer to the printed microarray.

12x16 pattern of features in each grid

1. 48 grids in a 12x4 pattern.

- 2. Each grid has 12x16 features.
- 3. Total 9216 features.
- 4. Each pin prints 3 grids.

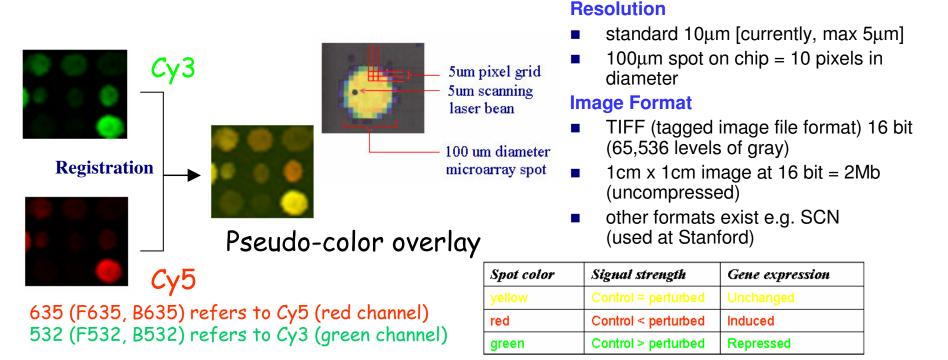

	Sum pixel grid Sum scanning laser bean 100 um diameter microarray spot 4x4 pattern corresponding to cassette is repeated 3 times on the array Pin 1 Pin 2 Pin 3 Pin 4 Pin 5 Pin 6 Pin 10 Pin 11 Pin 13 Pin 14 Pin 5 Pin 6 Pin 1 Pin 2 Pin 3 Pin 4 Pin 1 Pin 2 Pin 1 Pin 12 Pin 13 Pin 14 Pin 5 Pin 6 Pin 7 Pin 8 Pin 9 Pin 10 Pin 11 Pin 12 Pin 13 Pin 14 Pin 15 Pin 16 Pin 13 Pin 14 Pin 15 Pin 13 Pin 14 Pin 15 Pin 14 Pin 15 Pin 16 Pin 13 Pin 14 Pin 15 Pin 14 Pin 15 Pin 16				
Γ	Pin 1	Pin 2	Pin 3	Pin 4	
	Pin 5	Pin 6	Pin 7	Pin 8 —	
	Pin 9	Pin 10	Pin 11	Pin 12	
	Pin 13	Pin 14	Pin 15	Pin 16	
	Pin 1	Pin 2	Pin 3	Pin 4	
	Pin 5	Pin 6	Pin 7	Pin 8	
	Pin 9	Pin 10	Pin 11	Pin 12	
	Pin 13	Pin 14	Pin 15	Pin 16	
	Pin 1	Pin 2	Pin 3	Pin 4	
	Pin 5	Pin 6	Pin 7	Pin 8	
	Pin 9	Pin 10	Pin 11	Pin 12	
	Pin 13	Pin 14	Pin 15	Pin 16	

Image Processing

The image of the array is the raw data.

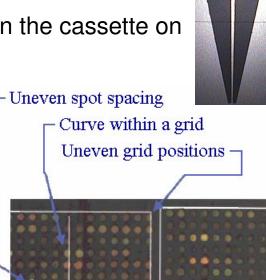
- The total amount of hybridization for a spot is proportional to the total fluorescence generated by the spot.
- Spot intensity = sum of pixel intensities within the spot mask.
- 1. Identifying the Positions of the Features: Addressing
- 2. Identifying the Pixels That Comprise the Features: Segmentation
- 3. Identifying the Background Pixels.
- 4. Calculation of Numerical Information: Information extraction

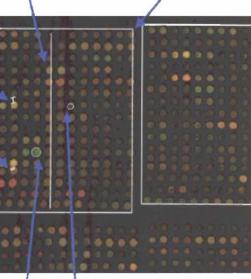
1. Identifying the Positions of the Features

Addressing/Gridding

- The feature on most microarray are arranged in a rectangular pattern.
- grid: larger spaces between the grids than between the features within each grid.
- The grid come about because there are several pins on the cassette on the spotting robot.
- The parameters associated with the grids:
 - \Box How many grids in each direction (x and y).
 - \Box How many feature per grid in each direction (x and y).
 - \Box The spacing between the grids.

The positions and sizes of the features within each grid may not be uniform:


Uneven grid positions: this can happen if the pins are not perfectly aligned in the cassette.


• Curve within a grid: the glass slide is not completely horizontal or the pin has moved slightly in the cassette.

• Uneven feature spacing: the pins have moved slightly in the cassette or the surface of the glass is not completely flat.

Uneven feature size: more or less fluid has been deposited on the glass during the manufacture of the array.

Uneven spot sizes

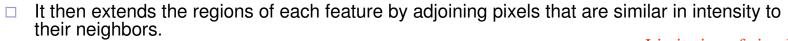
2. Identifying the Pixels: Segmentation

Classification of pixels as either foreground (signal) or background.

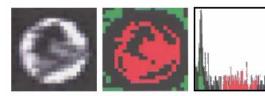
Fixed Circle Segmentation

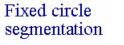
- places a circle of fixed size over the region of the feature and uses all the pixels in the circle as those that form part of the feature.
- Problem: gives inaccurate results if the features are of different size. (most common)

Variable Circle Segmentation

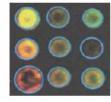

- □ fits a circle of variable size onto the region containing the feature.
- resolve features of different sizes, but perform less well on irregularly shaped features.

Histogram Segmentation

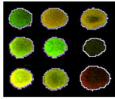

- □ fit a circle over the region of the feature and background and then looks at a histogram of the intensities of the pixels in the feature.
- □ The brightest and dimmest pixels are not used in the quantification of feature intensity.
- □ produces reliable results for irregularly shaped features.
- □ Histogram methods can be unstable for small features if the circular mask is too large.

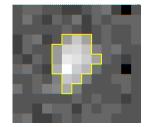

Adaptive Shape Segmentation

- □ A more sophisticated algorithm that can also resolve features with irregular shapes.
- □ The algorithm required a smaller number of seed pixels in the center of each feature to start.



Histogram Segmentation




Variable circle segmentation

Adaptive shape segmentation

Limitation of circular segmentation

3. Identifying the Background Pixels

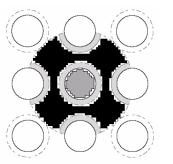
8/41

The signal intensity of a feature includes contributions from non-specific hybridization and other fluorescence from the glass.

It is usual to estimate this fluorescence by calculating the background signal from pixels that are near feature but are not part of any feature.

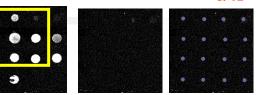
1. Local Background

- Focusing on small regions surrounding the spot mask.
- Median (mean) of pixel values in this region.
- By not considering the pixels immediately surrounding the spots, the background estimate is less sensitive to the performance of the segmentation procedure



GenePix Pro 6.0

background pixels


2-pixel exclusion region

feature pixels

2. Morphological Opening

The image is probed

with a structuring element, here, a square with side length about twice the spot to spot distance.

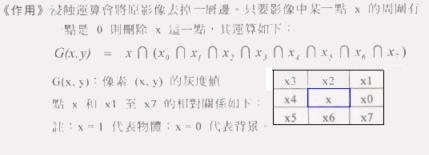
- Morphological opening: erosion followed by dilation.
- Erosion (Dilation): the eroded (dilated) value at a pixel x is the minimum (maximum) value of the image in the window defined by the structuring element when its origin is at x.
- Done separately for the red and green images.
- Produces an image of the estimated background for the entire slide. OPENING CLOSING

3. Constant Background

- Global method which subtracts a constant background for all spots.
- Some evidence that the binding of fluorescent dyes to 'negative control spots' is lower than the binding to the glass slide
- More meaningful to estimate background based on a set of negative control spots
- If no negative control spots : approximation of the average background = third percentile of all the spot foreground values

4. No Background Adjustment

Probably not accurate, but may be better than some forms of local background determination!


---- QuantArray ---- ScanAlvze

Morphological Opening and Closing

外形影像處理

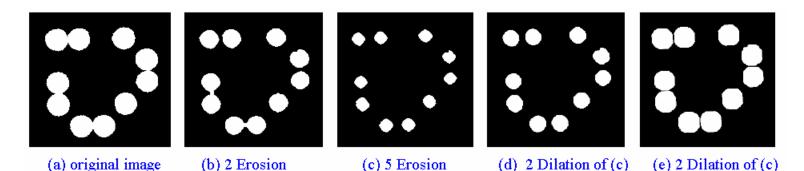
浸蝕運算 (Erosion)

增長運算 (Dilation)


《作用》增長運算會將原影像長一層邊。只要影像中某一點 x 的周圍有一 點是 1 則輸出 1,其運算如下: $G(x, y) = x \cup (x_0 \cup x_1 \cup x_2 \cup x_3 \cup x_4 \cup x_5 \cup x_6 \cup x_7)$ G(x, y): 像素 (x, y) 的灰度値註: x = 1 代表物體: x = 0 代表背景。

開閉運算 (Opening and Closing)

《作用》開運算為連續 N 次浸蝕運算後再加上 N 次增長運算; 閉運算為連續 N 次增長運算後再加上 N 次浸蝕運算。 開運算可將影像中藕斷絲連的物體切開; 閉運算則可補滿影像物體之間的紃縫。



(a) original image

(b) 2 Dilation

(c) 2 Erosion of (b)

4. Calculation of Numerical Information

- Image-processing software will typically provide a number of measures:
 - □ Signal mean, Background mean, Signal median, Background median.
 - □ Signal standard deviation, Background standard deviation.
 - Diameter, Number of pixels.
 - Flag: a variable that is 0 if the feature is good, and will take different values if the feature is not good.
- **First important:** the measure of hybridization intensity for each feature.
 - □ It is preferable to use the median over the mean.
 - Median is more robust to outlier pixels than the mean: a small number of very bright pixels (arising from noise) have the potential to skew the mean, but will leave the median unchanged.
- Second important: signal standard deviation is used as a quality control for the array in two different ways.
 - □ As measure of quality control of the feature. If the standard deviation of a feature is greater than say 50% of the median intensity, the feature could be rejected as substandard.
 - To determine whether an array is saturating. The problem with saturated features is that we do not know the true intensity of the feature, and so it is not possible to use such features as part of a quantitative analysis of gene expression.
- Third important: flag
 - Bad feature: the pixel standard deviation is very high relative to the pixel mean.
 - □ Negative feature: the signal of the feature is less than the signal of the background.
 - Dark feature: the signal of the feature is very low.
 - Manually flagged feature: the user has flagged the feature using the image-processing software.

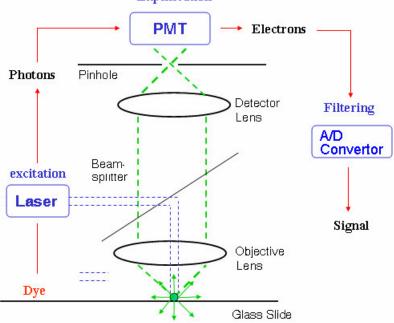
Background

Signal

Quality Measurements

Spot Quality

- Brightness: foreground/background ratio.
- □ **Uniformity**: variation in pixel intensities and ratios of intensities within spot.
- □ **Morphology**: Spot size, area, perimeter, circularity.
- Identification of "bad spot" (spots with no signal). Percentage of automatically flagged spots.
- Background spatial variation: variance of background median
- Median signal intensity for (1) empty, negative and positive controls spots. (2) difference between negative and positive spots.


Array Quality

- Controls variation: variance of replicated control
- □ Correlation between spot intensities.
- □ Percentage of spots with no signals.
- Distribution of spot signal area.
- Range of intensities

Ratio (2 spots combined)

- Signal to Noise ratio: log2(fg.median / bg.median)
 GenePix:
 - (Cy5FG.median Cy5BG.median)/ Cy5BG.SD
- Difference in PMT value
- Amount of normalization adjustment: M value adjustment at 25, 50, 75 percentile of A values.

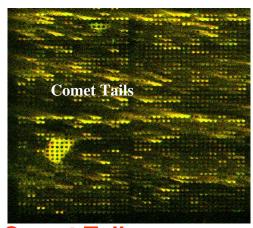
Example from GenePix

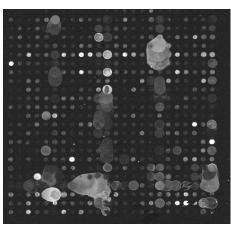
<pre>"Testring" *" 10 "testring" *" 10 "testring" *" 10 "testring **" 10 "testring *** 10 "testring ************************************</pre>	 gal
--	-------------------------

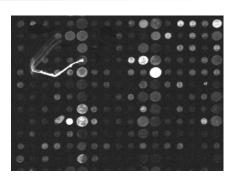
- F635 Median: the median feature pixel intensity at wavelength #1 (635 nm).
- **B635 Median:** the median feature background intensity at wavelength #1 (635 nm).

*.tif

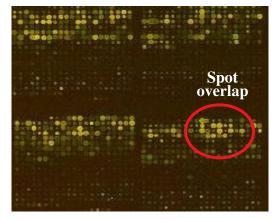
- F532 Median: the median feature pixel intensity at wavelength #2 (532 nm).
- **B532 Median:** the median feature background intensity at wavelength #2 (532 nm).


Quantification of Expression

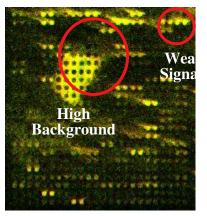

Red intensity (Cy5) = Rfg - Rbg Green intensity (Cy3) = Gfg - Gbg



Practical Problems


Dust

More...


http://www.corning.com/lifesci ences/technical_information/t echdocs/troubleshootingUltra GAPS_ProntoReagents.asp

http://www.asperbio.com/FAQ .htm

Comet Tails: Likely caused by insufficiently rapid immersion of the slides in the succinic anhydride blocking solution.

Spot overlap: Likely cause: too much rehydration during post - processing.

- 2 likely causes:
- Insufficient blocking.
- Precipitation of the labelled probe.

probe. Source: Yang et al. (2000), TR 584, Statistics, UC-Berkeley.

Microarray Protocols http://www.zmdb.iastate.edu/zmdb/microarray/protocols.html

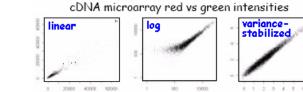
Data Cleaning and Transformation

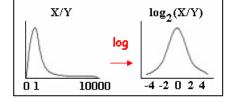
Ensure that the data is of high quality and suitable for analysis.

Removing Flagged Features

- Remove flagged features from the data set. (Sometimes removing potentially valuable data)
- Refer back to the original image of every flagged feature and to identify the problem that has resulted in flagging. (Require time and resources, not practical)

Background Subtraction


- The background signal is thought to represent the contribution of non-specific hybridization of labeled target to the glass, as well as the natural fluorescence of the glass slide itself.
- Deal with negative signal:
 - Remove these features from the analysis (most common approach) the high background is taken to represent a local problem with that array, regarded as unreliable.
 - Use the lowest available signal-intensity measurement as the background subtracted intensity (typically value 1). idea behind: represents a gene with no or very low expression, and so the lowest value available used.
 - Estimate the true feature intensity (Bayesian). Assume: true feature intensity is higher than the background intensity, and so the high background represents some type of experimental error.

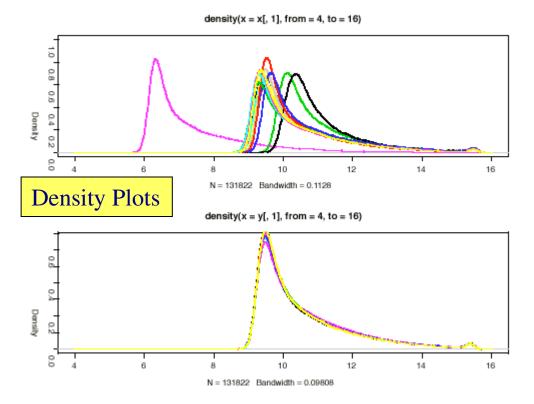

Taking Logarithm

- The objective of log transformation:
 - There should be a reasonably even spread of features across the intensity range.
 - The variability should be constant at all intensity levels.
 - The distribution of experimental errors should be approximately normal.
 - The distribution of intensities should be approximately bell-shaped.
- Other transformation can be applied: aim at ensure the variability is constant at all intensity level.
- Logarithm of base 2
 - The ratio of the raw Cy5 and Cy3 intensities is transformed into the difference between the logs of the intensities of the Cy5 and Cy3 channels.
 - □ 2-fold up-regulated genes correspond to a log ratio of +1.
 - □ 2-fold down-regulated genes correspond to a log ratio of -1.
 - Genes are not differentially expressed have a log ratio of 0.
 - The log ratios have a natural symmetry, which reflects that biology and is not present in the raw fold difference.

log2 ratio

= Loa2(Cv5/Cv3

Red intensity (Cy5) = Rfg - Rbg Green intensity (Cy3) = Gfg - Gbg

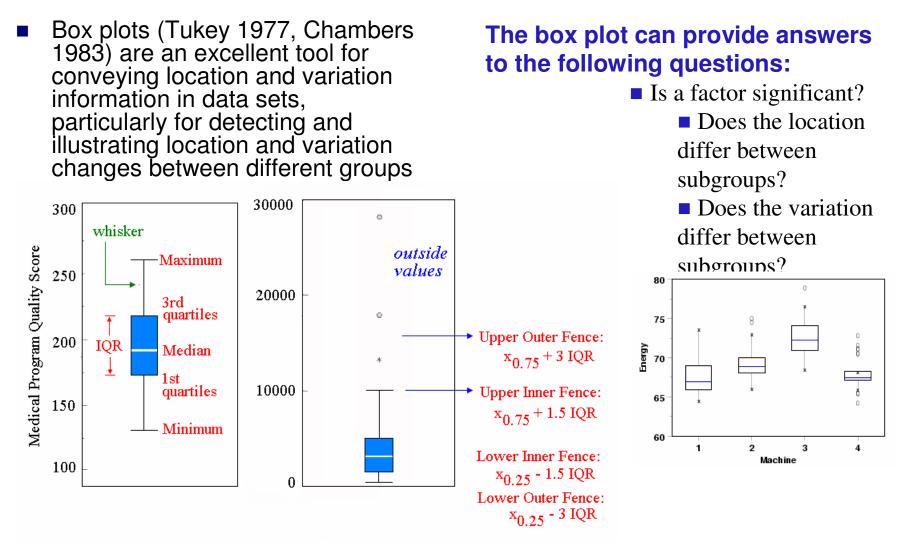

Diagnostic Plots

e.g. Red and green log-intensities, Intensity log ratio M, Average logintensities A,...

Stratify plots

according to layout parameters, e.g. print-tip group, plates,...

Box Plots



8

Box Plots

Further reading: http://www.itl.nist.gov/div898/handbook/eda/section3/boxplot.htm

- 1/2h adjusts the height of each bar so that the total area enclosed by the entire histogram is 1.
- The area covered by each bar can be interpreted as the probability of an observation falling within that bar

Disadvantage for displaying a variable's distribution:

- selection of rigin of the bins.
- selection of bin widths.
- the very use of the bins is a distortion of information because any data variability within the bins cannot be displayed in the histogram.

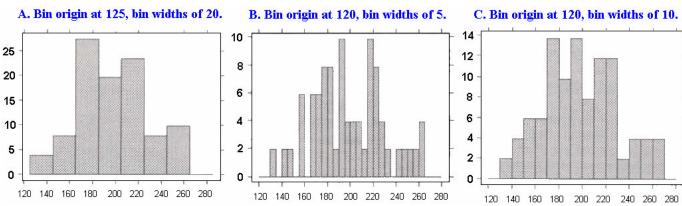
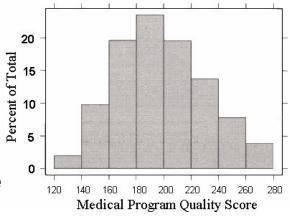
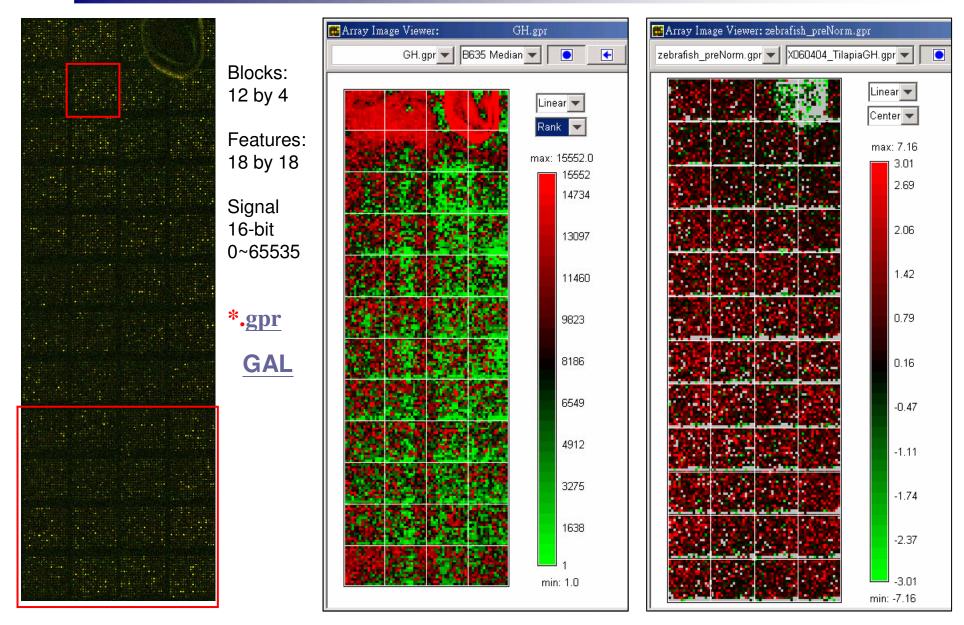
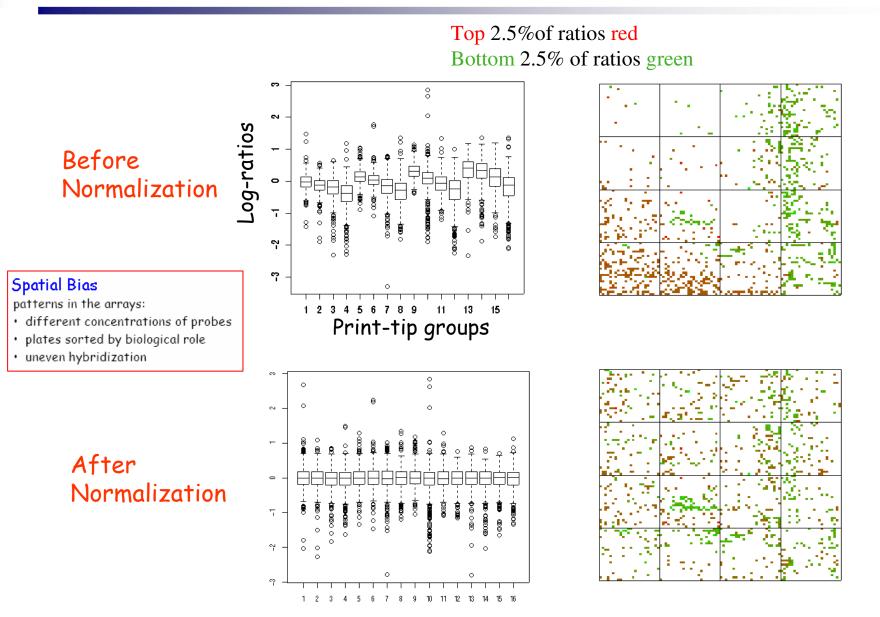



Figure Sources: Jacoby (1997).

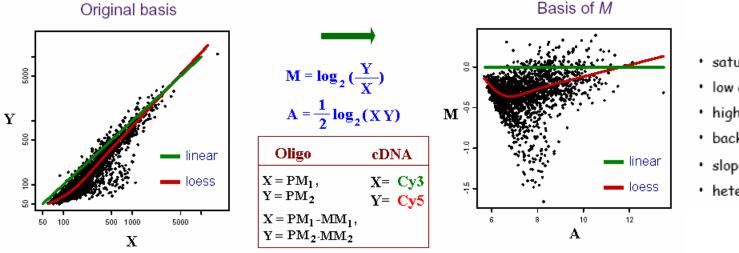
O. Bin origin at 120, bin widths of 20.



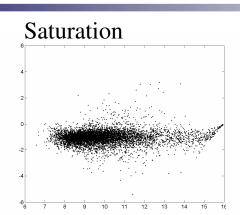
Histogram

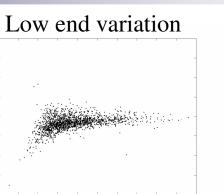

Array Image

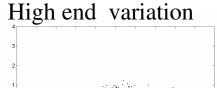
Boxplots and Pin-group Effects


Scatterplot and MA plot

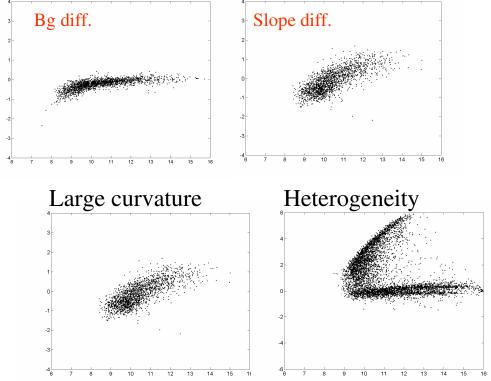
Features of scatter plot


- □ the substantial correlation between the expression values in the two conditions being compared.
- the preponderance of low-intensity values. (the majority of genes are expressed at only a low level, and relatively few genes are expressed at a high level)
- Goals: to identify genes that are differentially regulated between two experimental conditions.
- Outliers in logarithm scale
 - □ spreads the data from the lower left corner to a more centered distribution in which the prosperities of the data are easy to analyze.
 - easier to describe the fold regulation of genes using a log scale. In log2 space, the data points are symmetric about 0.


MA plots (Dudoit *et al.* 2002) can show the intensity-dependant ratio of raw microarray data.



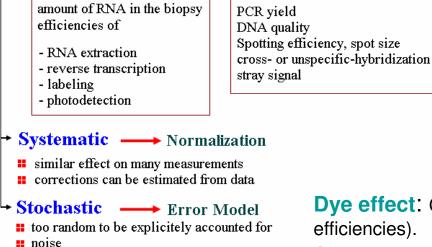
- saturation
- low end variance
- high end variance
- background difference
- slope difference
- heterogeneity


Common Problems Diagnosed Using MA Plots

Curvature at Low intensity

$Y_{ik} = a_i + b_i X_{ik} e^{(\eta_k + \zeta_{ik})} + \varepsilon_k + \delta_{ik}$

i, channel (1,2) *k*, gene (1 ... n genes) $Y_{ik} = PMT \text{ of channel } i \text{ and gene } k$ $a_i = \text{mean background of channel } i$ $b_i = \text{slope of channel } i$ $X_{ik} = RNA \text{ abundance at channel}$ i and gene k $\eta_k = \text{common multiplicative error}$ $\zeta_{ik} = \text{multiplicative error}$ $\delta_{ik} = \text{additive error of channel } i$


Rocke and Durbin (2001) J. Comp. Bio. 8:557-569

Source: Xiangqin Cui, Jackson Lab

Normalization

- Sources of Variation

What is normalization?

Non-biological factor can contribute to the variability of data, in order to reliably compare data from multiple probe arrays, differences of non-biological origin must be minimized.

Normalization is a process of reducing unwanted variation across chips. It may use information from multiple chips.

Dye effect: Cy5 is usually more bleached than Cy3 (labeling efficiencies).

Slide effect: The normalization factor is slide dependent.

print-tip, spatial plate effects

Why normaliation?

Normalization corrects for overall chip brightness and other factors that may influence the numerical value of expression intensity, enabling the user to more confidently compare gene expression estimates

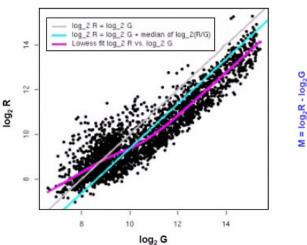
between samples. Ensure that the data is of high quality and suitable for analysis. *Main idea*

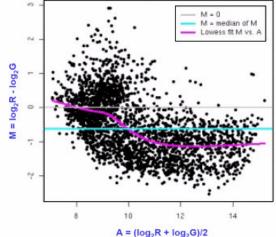
Remove the systematic bias in the data as completely possible while preserving the variation in the gene expression that occurs because of biologically relevant changes in transcription.

Assumption

The average gene does not change in its expression level in the biological sample being tested.

Most genes are not differentially expressed or up- and down-regulated genes roughly cancel out the expression effect.


Self-self Hybridizations



- The need for normalization can be seen most clearly in self-self hybridizations where the same mRNA sample is labeled with the Cy3 and Cy5 dyes.
- The imbalance in the red and green intensities is usually not constant across the spots within and between arrays, and can vary according to overall spot intensity, location, plate origin, etc. These factors should be considered in the normalization.
- By examining self-self hybridizations, where no true differential expression is occurring.
- There are dye biases which vary with spot intensity, location on the array, plate origin, pins, scanning parameters,
 Self-self Hybridizations

Minimizing Normalization

- dye swap strategies
- replicates
- reference samples
- controls
- error checking and quality control
- beautiful and consistent techniques
- sensible design of arrays and experiments

. . .

Normalization Methods

Within-Array Normalization: location

Correcting for Different Responses of the Cy3 and Cy5 Channels

- Linear Regression of Cy5 Against Cy3 (Global Normalization)
- Linear Regression of Log Ratio Against Average Intensity
- Nonlinear Regression of Log Ratio Against Average Intensity (Lowess Normalization)
- Correcting for Spatial Effects
 - Two-Dimensional Lowess Regression
 - Block-Block Loess Regression (Within Print-tip Group Normalization)

Within-Array Normalization: scale

Between-Array Normalization

(to enable comparison of multiple arrays)
 Centering, Scaling, Distribution Normalization

Paired-slides Normalization

(dye swap Experiments) (**Slef-normalization**)

Which Genes To Use

 All genes on the array
 Constantly expressed genes (housekeeping genes)

Controls (spiked controls or titration series of control sequences)

Global Normalization

The Cy3 and Cy5 are incorporated into cDNA with different efficiencies: without normalization, it would not be possible to accurately assess the relative expression of sample that are labeled with those dyes; genes that are actually expressed at comparable levels would have a ratio different than 1.

Constant normalization factor:

Cy5 and Cy3 intensities are related by a constant factor,

- \square *R* = *kG*, and
- the center of the distribution of log ratios is shifted to zero.
 (i.e. the average ratio for gene expression is 1.)

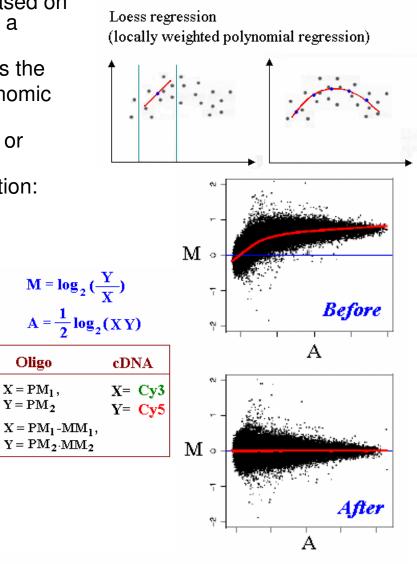
$$\log_2 R/G \Rightarrow \log_2 R/G - c = \log_2 R/(kG)$$

- c = median or mean of log ratios for a particular gene set (e.g. housekeeping genes).
- $\mathbf{k} = \sum \mathbf{R}_i / \sum \mathbf{G}_i$ total intensity.

Lowess Normalization

 Loess normalization (Bolstad *et al.*, 2003) is based on MA plots. Two arrays are normalized by using a lowess smoother.

Skewing reflects experimental artifacts such as the


- contamination of one RNA source with genomic DNA or rRNA,
- the use of unequal amounts of radioactive or fluorescent probes on the microarray.
- Skewing can be corrected with local normalization: fitting a local regression curve to the data.
 - **1.** For any two arrays i, j with probe intensities x_{ki} and x_{kj} where $k = 1, \ldots, p$ represents the probe
 - 2. we calculate

$$M_k = \log_2(x_{ki}/x_{kj})$$
 and $A_k = \frac{1}{2}\log_2(x_{ki}x_{kj})$.

3. A normalization curve is fitted to this *M* versus *A* plot using loess.

Loess is a method of local regression (see Cleveland and Devlin (1988) for details).

- 4. The fits based on the normalization curve are \hat{M}_k
- **5.** the normalization adjustment is $M'_k = M_k \hat{M}_k$.
- 6. Adjusted probe intensites are given by $x'_{ki} = 2^{A_k + \frac{M'_K}{2}}$ and $x'_{ki} = 2^{A_K - \frac{M'_k}{2}}$.

 $\log_2 R/G \Rightarrow \log_2 R/G - c(A) = \log_2 R/[k(A)G].$

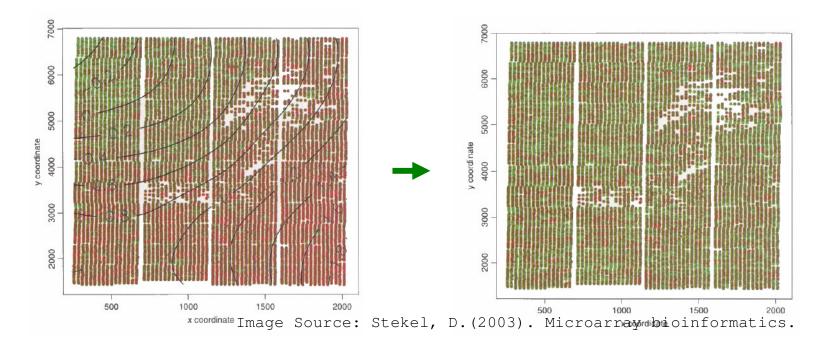
Rank-invariant Method

Housekeeping Genes: beta-actin, GAPDH.
 Each gene expression value in a single array experiment is divided by the mean expression values of these housekeeping genes.

Assumption: such genes do not change in their expression values between two conditions.

Human Gene Expression
 (HuGE) database: 7000 gene in
 19 tissues: 451 housekeeping
 genes are commonly expressed
 across all theses tissues.

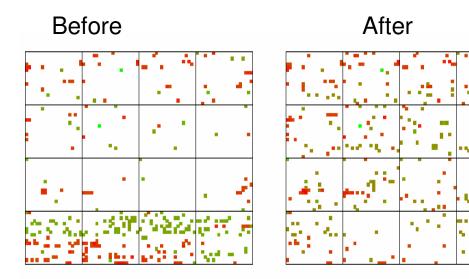
Rank-invariant method (Schadt et al. 2001, Tseng et al. 2001):


- If a particular gene is up- or down- regulated, then its Cy5 rank among whole genome will significantly different from Cy3 rank.
- Iterative selection helps to select a more conserved invariant set when number of genes is large.

Two-Dimensional Lowess Regression

It fits a two-dimensional polynomial surface to the data.

- 1. Calculate the log ratio for each feature on the array.
- 2. Produce a pseudo image of the log ratios of the features as a function of the x and y coordinates of the features on the array.
- 3. Perform a two-dimensional Loess fit of the log ratios as a function of the x and y coordinates of the features.
- 4. For each feature, calculate the normalized log ratio by subtracting the fitted value on the Loess surface from the raw log ratio.


Within Print-tip Group Normalization

(print tip + A)-dependent normalization

Most normalization methods do not correct for spatial effects produced by hybridization artifacts or print-tip or plate effects during the construction of the microarrays. It is possible to correct for both print-tip and intensitydependent bias by performing LOWESS fits to the data within print-tip groups.

 $\log_2 R/G \Rightarrow \log_2 R/G - c_i(A) = \log_2 R/[k_i(A)G].$

where $c_i(A)$ is the LOWESS fit to the MA-plot for the *i*th grid only.

Within-Array Normalization: Scale

- After within-print-tip-group normalization, all the normalized log-ratios from the different print-tip groups will be centered around zero.
- it is possible that the log-ratios from the various print-tip groups have different spread and some scale adjustment is required.

Assumption

- a relatively small proportion of the genes will vary significantly in expression between the two mRNA samples.
- the spread of the distribution of the log-ratios should be roughly the same for all print-tip groups.

 M_{ij} denotes the *j*th log-ratio in the *i*th print-tip group, $j = 1, \ldots, n_i$.

$$M_{ij} \sim \text{ normal} \left(\, 0, a_i^2 \sigma^2 \, \right)$$

where σ^2 is the variance of the true log-ratios

 a_i^2 is the scale factor for the *i*th print-tip group.

$$\sum_{i=1}^{I} \log a_i^2 = 0$$

- Estimation 1:

$$\hat{a_i} = \frac{\sum_{j=1}^{n_i} M_{ij}^2}{\sqrt[I]{\prod_{k=1}^{I} \sum_{j=1}^{n_i} M_{kj}^2}}$$

Estimation 2:

$$\hat{a_i} = \frac{MAD_i}{\sqrt[I]{\prod_{i=1}^{I} MAD_i}}$$

median absolute deviation MAD $MAD_i = \text{median}_j \{ | M_{ij} - \text{median}_j(M_{ij}) | \}.$

Between-Array Normalization

- In order to be able to compare the samples hybridized to different arrays on an equal footing, it is necessary to correct for the variability introduced by using multiple arrays.
- Assumption: the variations in the distribution between arrays are a result of experimental conditions and do not represent biological variability.

Scaling

- Data is scaled to ensure that the means of all the distributions are equal.
- Subtract the mean log ratio (or log intensity) of all of the data on the array from each log ratio (or log intensity) measurement on the array.
- The mlean of the measurements on each array will be zero after normalization.
- Use median: more robust measure of the average intensity on an array in situations where there are outliers or the intensities are not normally distributed.

Centering

- Data is centered to ensure that the means and the standard deviations of all of the distributions are equal.
- Following centering, the mean of the measurements on each array will be zero, and the standard deviation will be 1.
- Particularly useful when calculating the Pearson correlation coefficient of a large number of data sets prior to cluster analysis, because it ensures that the correlation coefficient can define a distance metric on the data.
- Use median and median absolute deviation from the median (MAD).
- This has the advantage of being more robust to outliers than using the mean and standard deviation, but has the disadvantage of not producing a distance metric when using Pearson correlation.

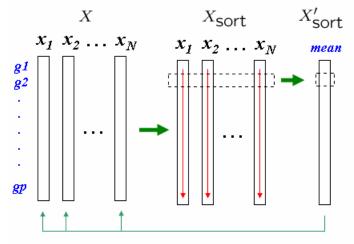
Distribution Normalization

Data is distribution normalized to ensure that the distribution of the data on each of the arrays are identical.

- Center the data.
- For each array, order the centered measurements from lowest to highest.
- Compute a new distribution whose lowest value is the average of the value of the lowest expressed gene on each of the array; whose second-lowest value is the average of the second-lowest values from each of the array; and so on. until the highest value is the average value of the highest values from each of the arrays.
- Replace each measurement on each array with the corresponding average in the new distribution.

(If a particular measurement is the 100th largest value on the array, replace it with 100th largest value in the new distribution.)

- Following distribution normalization, the measurements of each array will have mean 0, standard deviation 1, and identical distribution to all other arrays.
- It is useful where the different arrays have different distributions of values.


Quantiles Normalization

- Quantiles Normalization (Bolstad *et al*, 2003) is a method to make the distribution of probe intensities the same for every chip. That is each chip is really the transformation of an underlying common distribution.
- The two distribution functions are effectively estimated by the sample quantiles.
- The normalization distribution is chosen by averaging each quantile across chips.
 - 1. Given N datasets of length p form X of dimension $p \times N$ where each dataset is a column
 - 2. Set $d = \left(\frac{1}{\sqrt{N}}, \dots, \frac{1}{\sqrt{N}}\right)$

in X'_{sort} is given by $q'_i = \text{proj}_d q_i$

- 3. Sort each column of X to give X_{SORT}
- 4. Project each row of X_{sort} onto d to get X'_{sort}
- 5. Get X_{norm} by rearranging each column of X'_{sort} to have the same ordering as original X

 X_{norm} rearranging each column of X'_{sort} to have the same ordering as original X

2. The projection is equivalent to talking the average of the quantile in a particular row and substituting this value for each of the individual elements in that row

1. If $q_i = (q_{i1}, \ldots, q_{iN})$ is a row in X_{sort} then the corresponding row

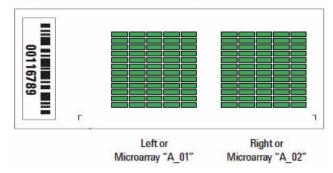
$$\operatorname{proj}_{\boldsymbol{d}} \boldsymbol{q}_{i} = \frac{\boldsymbol{q}_{i} \cdot \boldsymbol{d}}{\boldsymbol{d} \cdot \boldsymbol{d}} \boldsymbol{d} = \frac{1}{\sqrt{N}} \sum_{j=1}^{N} q_{ij} \boldsymbol{d} = \left(\frac{1}{N} \sum_{j=1}^{N} q_{ij}, \dots, \frac{1}{N} \sum_{j=1}^{N} q_{ij}\right)$$

The qth quantile of a data set is defined as that value where a q fraction of the data is below that value and (1-q) fraction of the data is above that value. For example, the 0.5 quantile is the median.

Slef-Normalization

Paired-slides normalization applies to dye-swap experiments: two hybridizations for two mRNA samples, with dye assignment reversed in the second hybridization.

- first slide by $\log_2 R/G c$ second slide by $\log_2 R'/G' - c'$
- ➡ The normalized log-ratios on the two slides are of equal magnitude and opposite sign


$$\log_2 R/G - c \approx -(\log_2 R'/G' - c').$$

c and c' denote the normalization functions for the two slides;

If
$$c \approx c'$$
, then $c \approx \frac{1}{2} \left[\log_2 R/G + \log_2 R'/G' \right] = \frac{1}{2} (M + M').$

The normalized log_2 -ratios will then be $\frac{1}{2} \left[\log_2 R/G - c - \left(\log_2 R'/G' - c' \right) \right]$ $\approx \frac{1}{2} \left[\log_2 R/G + \log_2 G'/R' \right] = \frac{1}{2} \log_2 \frac{RG'}{GR'} = \frac{1}{2} (M - M').$

Agilent Microarray Layout

In practice, c = c(A) is estimated by the lowess fit to the plot of

$$\frac{1}{2}(M + M')$$
 vs. $\frac{1}{2}(A + A')$

Normalization Methods

Within-array Normalization

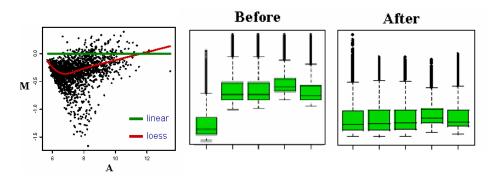
	Subject be used for estimating normalization curve			
Location Normalization				
Method	allGenes	Print-tip i	2D Location (x, y)	SelectedGenes
				(Controls, Housekeeping, MSP, Invariant set)
constant	global normalization	print-tip normalization		
	N = M - c	$N = M - c_i$		
	c: mean, median			
loess	global loess normalization	print-tip loess normalization	2D loess normalization	Smyth and Speed (2003)
(Robust scatterplot smoother:	N = M - c(A)	$N = M - c_i(A)$	N = M - c(x, y) - c(A)	$N = M - p_A c_{\rm MSP}(A) - (1 - p_A)c_i(A)$
loess, spline,)	c : loess curve			
Scale Normalization				
MAD	global scale normalization	print-tip scale normalization		

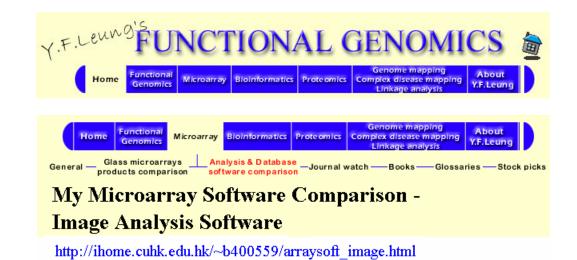
MAD	global scale normalization	print-tip scale normalization	
	$N=s\times M$	$N = s_i \times M$	
	s = 1/mad(A)	$s_i = 1/\!mad_i(A)$	
STD	standardization		
	N = M - ave(M)/std(A)		

Between-array Normalization

Scale-normalization: scaling of the M-values from a series of arrays so that each array has the same $MAD = \mathrm{median}|M - \mathrm{median}(M)|$

Paired-array Normalization (Dye-swap)





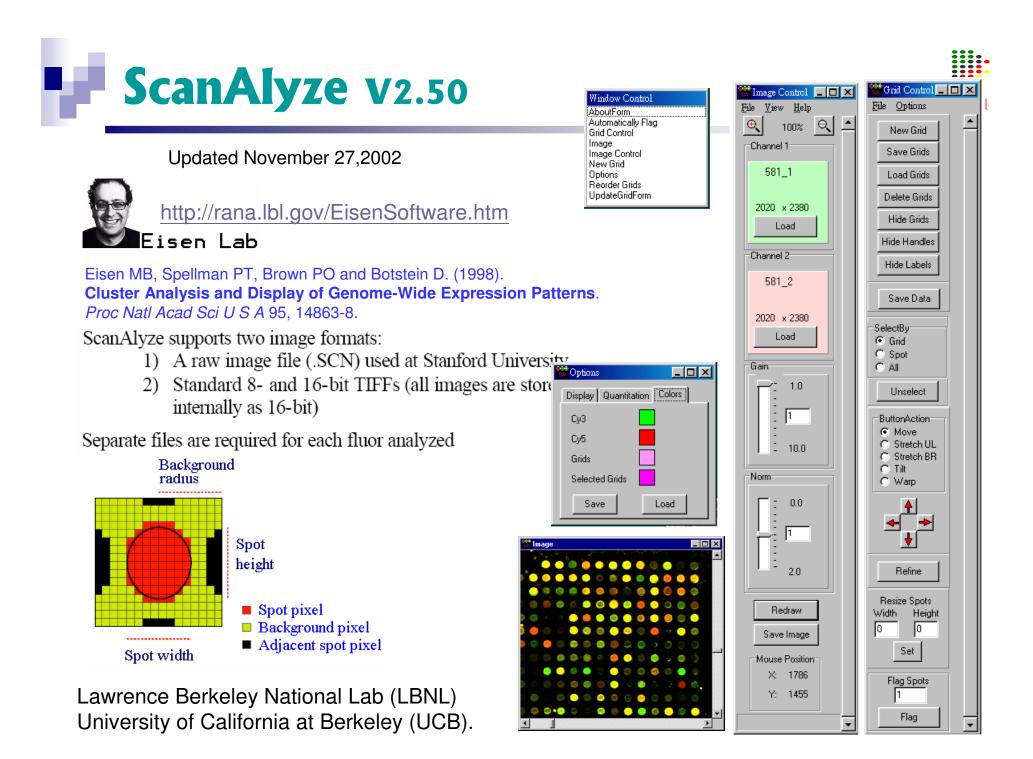
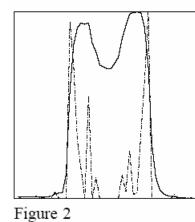
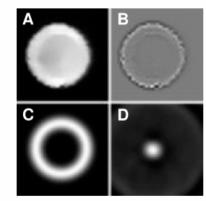


Image Analysis/Normalization

- Freeware/Shareware
 - ScanAlyze
 - Bioconductor: marrayNorm, arrayQuality
 - Dapple
- Commercial
 - GenePix
 - □ Spot

BOOK: Kamberova, G. and Shah, S. 2002. DNA Array Image Analysis: Nuts and Bolts. DNA press.





http://www.cse.wustl.edu/~jbuhler/research/dapple/

Jeremy Buhler Department of Computer Science and Engineering at Washington University in St. Louis

- Dapple is a program for quantitating spots on a two-color DNA microarray image.
- Given a pair of images from a comparative hybridization, Dapple finds the individual spots on the image, evaluates their qualities, and quantifies their total fluorescent intensities.

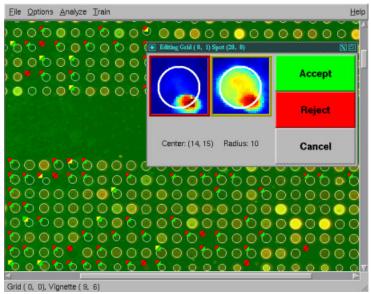


Figure 2: an intensity cross-section of a typical spot (solid line) overlaid with its negative second derivative (dashed line; only regions greater than zero are shown). The negative second derivative is maximized at the upper edge of the spot.

Figure 3: the spot finding process. (A) a vignette image containing a spot; (B) the negative Laplacian L of the image, which highlights the spot's edge; (C) a circular filter M_r (r = 11 pixels) which matches the spot's radius; (D) the 2D correlation of M_r at all offsets against L, which is maximized at the spot's center.

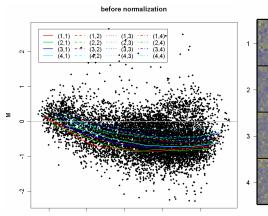
Spot v1.2

http://spot.cmis.csiro.au/spot/index.php

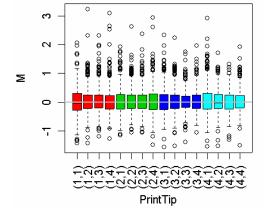
- CSIRO provides a free evaluation version of **Spot** image analysis software on a limited 30 day licence.
- Features
 - \Box Automatic grid location.
 - □ Flexible spot segmentation.
 - □ Morphological background estimation.
- Segmentation: seeded region growing technique (Adams and Bischof, 1994).
- Batch automatic addressing.
- Segmentation. Seeded region growing (Adams & Bischof1994): adaptive segmentation method, no restriction on the size or shape of the spots.
- Information extraction
 - □ Foreground. Mean of pixel intensities within a spot.
 - Background. Morphological opening: nonlinear filter which generates an image of the estimated background intensity for the entire slide.
- Spot quality measures.

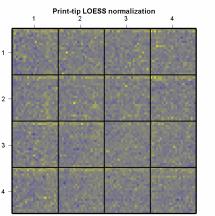
🎒 Spot Home Page - Mic	crosoft Internet Explorer	x
⇔上一頁 ▾ ⇒ ▾ ◙		
網址(D) 🕘 http://spo	t.cmis.csiro.au/spot/index.php 🔹 ぐ移	至
CSIRO Mathematical and Information Sciences	Spot: Software for Analysis of Microarray Images CSIRO Mathematical and Information Sciences, Image Analysis Group	•
<u>Spot</u> <u>Home</u> <u>Purchase</u>		
Spot		
Spot Price List	Spot is a software package for the analysis of microarray images.	
<u>Download</u> Evaluation	cDNA microarrays, or 'DNA chips', are used to analyse the expression levels of large collections of genes. Spot is a microarray spot detection and characterisation package which extracts more meaningful numerical information than other comparable packages.	
Installation Instructions	For example, Spot can accommodate non-circularity of spots and employs superior between-the-spots (background) estimation techniques. Appropriate background adjustment can substantially improve the precision of low-	
<u>Spot</u> <u>User</u> <u>Manual</u>	intensity spot values. An automatic grid-finding procedure also minimises manual intervention.	
FAQ	Summary of Features:	
<u>Version</u> <u>History</u>	 Automatic grid location. Flexible spot segmentation. Morphological background estimation. 	•
一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一		//.

The Bioconductor v1.7


http://www.bioconductor.org/

library(arrayQuality)


http://www.sandler-fgcf.ucsf.edu/software/


library(arrayMagic)

two-colour cDNA array quality control and preprocessing

after print-tip loess normalization

3.1

2.2

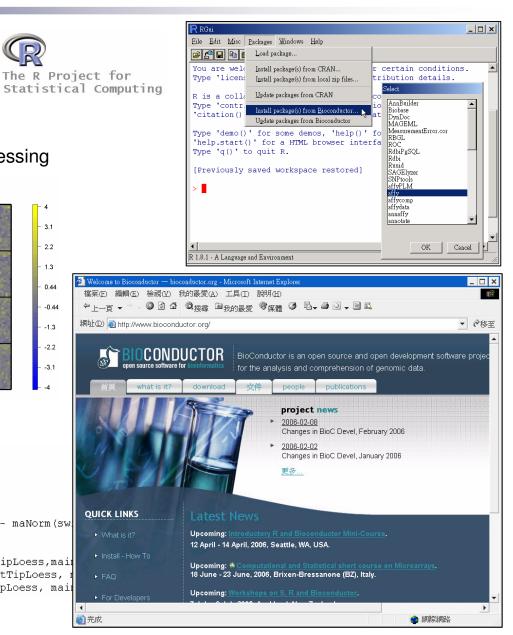
13

0.44

-0.44

-1.3 -2.2

-3.1


library(marrayInput) data(swirl) swirl.3 <- swirl[,3]</pre>

library(marrayNorm)

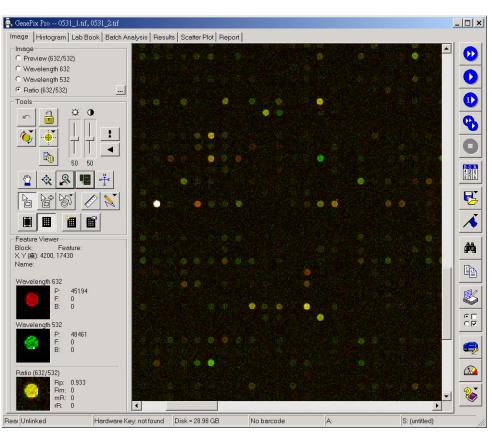
swirl.norm.printTipLoess <- maNorm(sw</pre>

library(marrayPlots)

maImage(swirl.norm.printTipLoess,main maBoxplot(swirl.norm.printTipLoess, maPlot(swirl.norm.printTipLoess, main

GenePix Pro v6.0

http://www.moleculardevices.com/pages/software/gn_genepix_pro.html


- GenePix Pro is the complete standalone image analysis software for microarrays, tissue arrays and cell arrays
- IMAGING TOOLS
 - Display
 - Feature-Finding
 - Measuring Tools
 - Image Alignment

ANALYSIS TOOLS

- Background Subtraction
- □ The Feature Viewer
- The Feature Pixel Plot
- Advanced Quality Control Flagging
- Extracting Data from Images
- Normalization
- Web Integration
- AUTOMATION
- VISUALIZATIONS
- REPORTS AND SCRIPTING

Axon Instruments

