Microarray Data Analysis

Normalization Methods for Analysis of Affymetrix GeneChip Microarray

中央研究院 生命科學圖書館 2008 年教育訓練課程 2008/01/29

> 吴漢銘 淡江大學 數學系 hmwu@math.tku.edu.tw http://www.hmwu.idv.tw

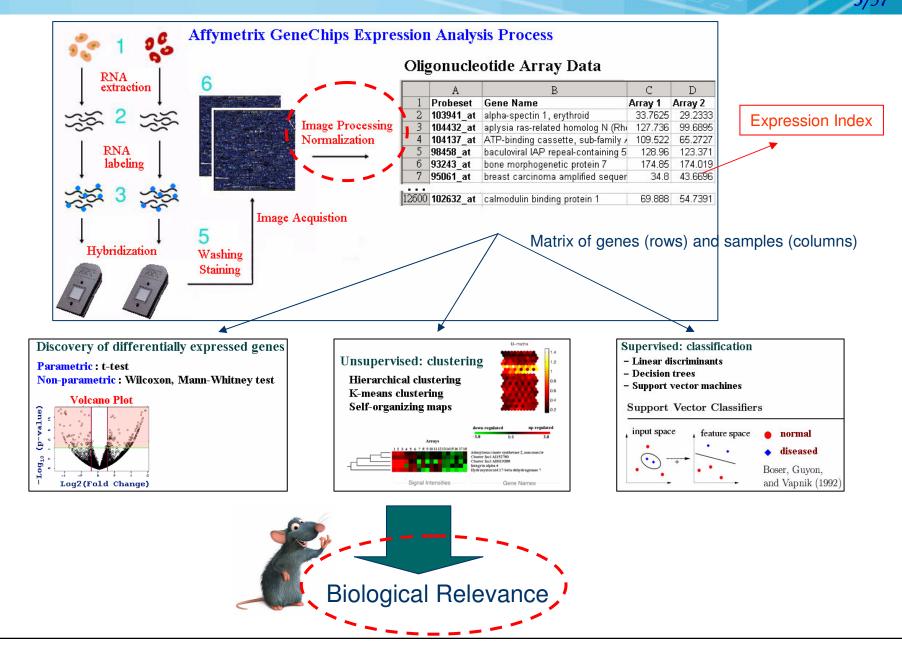
Outlines

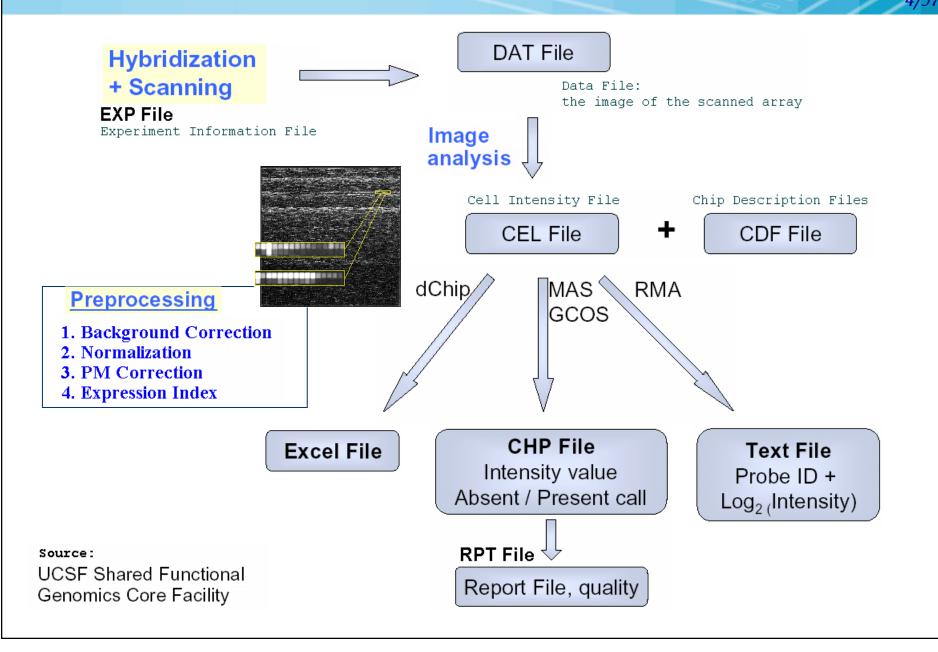
Analysis Flow Chart

Quality Assessment

- Low Level Analysis (from probe level data to expression value)
- **Software**

Affymetrix Dominates DNA Microarrays Market (75%~85%) http://www.gene2drug.com/about/archives.asp?newsId=180




1. 您對Affymetrix GeneChip已有一些了解。

2. 您對統計分析方法並不討厭。

Overview of Microarray Analysis

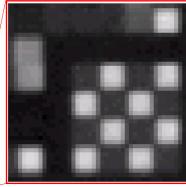
Analysis Flow Chart

Affymetrix Data Files

*.EXP file

Scan Date

Scanner ID


Number of Scans 2

Affymetrix GeneChip Experiment Information Version 1

[Sample Info] Chip Type HG-U133A Chip Lot Operator array Sample Type RNA Description Project Dr. Mi Comments Solution Tupe Solution Lot [Fluidics] Protocol EukGE-WS204 Completed Station 1 Module 2 Hybridize Date Oct 19 2004 01:17PM [Scanner] Pixel Size 3 Filter 570 Scan Temperature

Oct 19 2004 01:41PM

*.DAT file ~50MB GeneChie

Version=3

GridCornerUL=230 231

GridCornerUR=4503 235

GridCornerLR=4499 4506

GridCornerLL=226 4502

Axis-invertX=0

AxisInvertY=0 swapXY=0

[CEL]

[HEADER]

Cols=712

Rows=712

TotalX=712

TotalY=712

OffsetX=0

OffsetY=0

*.CEL file ~12MB

DatHeader=[9..46155] 7:CLS=4733 RWS=4733 XIN=3 VIN=3 UE=17

(Version 4) \sim 5MB

@**### ###?##**?**##**@?**#**?**##**Cols=712 Rows=712 TotalX=712 TotalY=712 OffsetX=0 0 ffsetY=0 GridCornerUL=230 231 GridCornerUR=4503 235 GridCornerLR=4499 4506 GridCornerLL=226 4502 Axis-invertX=0 AxisInvertY=0 swapXY=0 DatHeader=[9..4 61551 7:CLS=4733 RWS=4733 XIN=3 YIN=3 UE=17 2.0 02/24/04 13:41:05 HP HG-U133A.1sa 6 Algorithm=Percentile AlgorithmParameters=Percentile:75;CellMargin:2;OutlierHigh:1.500;OutlierLow :1.004 **IIII**Percentile>**IIII**Percentile=75 CellMargin=2 OutlierHigh=1.500 Outli A ■■■嫌P9HA ■■苹EF?D ■■■魚!??A ■■拾E O D ■■■澌w ⊕A ■■ rE澹 D ■■■呼∪_ A ■■ ■EhG)D ■■■憔湃#4 ■■4mE? D ■■■穗 ?A ■■ iE h D ■■■譒!現A ■■xfE? D ■■■嫁!鞱

> ΗP 2.0 02/24/04 13:41:05

Algorithm=Percentile AlgorithmParameters=Percentile:75;CellMargin:2;OutlierHigh:1.500;OutlierLow:1.004

Scanner Type HP	I INTENETTIN					
	[INTENSITY] NumberCells=56 CellHeader=X)6944 Y	MEAN	STDU	NPIXELS	
	0	0	114.5	14.7	16	
	1	0	4711.5	721.0	16	
CEL File Conversion Tool	2	Θ	111.8	13.9	16	
					•	
					•	

CDF file

Chip Description File (E.g., HG-U133_Plus_2.cdf)

Version=GC3.0																
[Chip]																
Name HG-U133_F	lus 2															
Rows=1164																
Cols=1164																
NumberOfUnits:	54675															
MaxUnit=59076																
NumQCUnits=9																
ChipReference	:															
[QC1]		[Unit1003_B1	ock1]					-								
Type=15		Name=121_at														
NumberCells=22	280	BlockNumber= NumAtoms=16	I													
CellHeader=X	Ŷ	P NumCells=32														
Cell1=6 0	Ň	StartPositio	n=0													
Cell2=8 0	N	StopPosition														
Cell3=10	Ð	CellHeader=X	Y	PROBE		QUAL	EXPOS	POS	CBASE	PBASE	TBASE	ATOM	INDEX CODONIND	CODON	REGIONTYPE	REGION
Cell4=12	õ	N Cell1=656 N Cell2=656	1012 1011	N	control control			13 13	A A	A T	A A	0 0	1178624 -1 -1 1177460 -1 -1	99 99		
Cell5=14	õ	N Cel13=1079	93	N	control			13	G	Ċ	G	1	109331 -1 -1	99		
Cell6=16	õ	Cell4=1079	94	N	control			13	Ğ	Ğ	G	1	110495 -1 -1	99		
Cell7=18	õ	_ Cell5=760	940	N	control			13	A	A	A	2	1094920 -1 -1	99		
Cell8=20	0	Cell6=760	939	N	control			13	A	Т	A	2	1093756 -1 -1	99		
Cell9=22	0	Cell7=575 N Cell8=575	983 984	N	control control			13 13	G G	C G	G G	3 3	1144787 -1 -1 1145951 -1 -1	99 99		
Cell10=24	0	Cell9=122	325	N	control			13	Т	A	Т	4	378422 -1 -1	99		
Cell11=26	0	Cell10=122	326	N	control			13	Ť	т	Ť	4	379586 -1 -1	99		
Cell12=28	0	Cell11=806	148	N	control			13	A	A	A	5	173078 -1 -1	99		
	0	Cell12=806	147	N	control			13	A	Т	A	5	171914 -1 -1	99		
Cell13=30		N Cell13=476 N Cell14=476	65 66	N	control control			13 13	G G	C G	G G	6 6	76136 -1 -1 77300 -1 -1	99 99		
Cell14=32	0	Cell15=922	26	N	control			13	A	A	A	7	31186 -1 -1	99		
Cell15=34	0	Cell16=922	25	N	control			13	A	Т	A	7	30022 -1 -1	99		
Cell16=36	0	Cell17=232	435	N	control			13	Т	A	т	8	506572 -1 -1	99		
Cell17=38	0	N Cell18=232	436	N	control			13 13	T C	T C	т С	8 9	507736 -1 -1	99		
Cell18=40	0	N Cell19=791 N Cell20=791	176 175	N	control control			13 13	C C	G	C C	9	205655 -1 -1 204491 -1 -1	99 99		
Cell19=42	0	Cell21=928	652	N	control			13	A	A	A	10	759856 -1 -1	99		
Cell20=44	0	Cell22=928	651	N	control	121_at	10	13	A	т	A	10	758692 -1 -1	99		
Cell21=46	0	Cell23=268	274	N	control		11	13	A	A	A	11	319204 -1 -1	99		
Cel122=48	0		25	0		48										
Cel123=50	0		25	Θ		50										
Cel124=52	0		25	0		52										
Cel125=54	Θ		25	Θ		54										
Cel126=56	Θ		25	Θ		56										
Cel127=58	Θ		25	Θ		58										
Cell28=60	Θ		25	Θ		60										
Cell29=62	Θ		25	Θ		62										
Cell30=64	0	N	25	0		64										

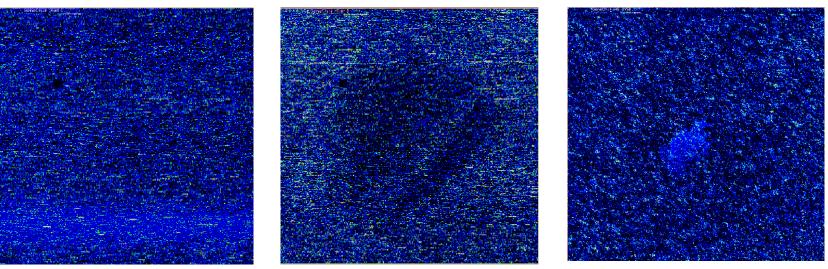
Quality Assessment

Array Image Inspection

RNA Degradation Plots

- MAS5.0 Expression Report File (*.RPT)
- Statistical Quality Control (Diagnostic Plots)

QC Reference

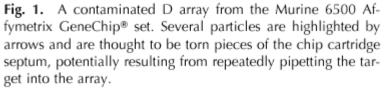

Probe Array Image Inspection

- Saturation: PM or MM cells > 46000
- Defect Classes: dimness/brightness, high Background, high/low intensity spots, scratches, high regional, overall background, unevenness, spots, Haze band, scratches, crop circle, cracked, cnow, grid misalignment.
- As long as these areas do not represent more than 10% of the total probes for the chip, then the area can be masked and the data points thrown out as outliers.

Haze Band

Crop Circles

Spots, Scratches, etc.



Source: Michael Elashoff (GLGC)

Probe Array Image Inspection (conti.)

Li, C. and Wong, W. H. (2001) Model-based analysis of oligonucleotide arrays: Expression index computation and outlier detection, Proc. Natl. Acad. Sci. Vol. 98, 31-36.

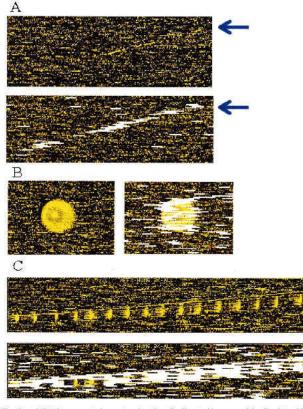
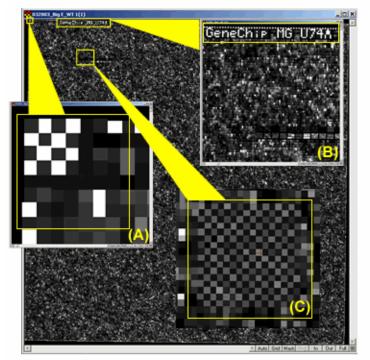
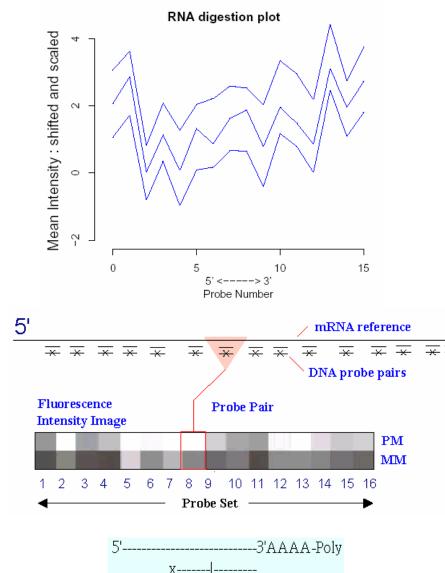



Fig. 5. (A) A long scratch contamination (indicated by arrow) is alleviated by automatic outlier exclusion along this scratch. (B and C) Regional clustering of array outliers (white bars) indicates contaminated regions in the original images. These outliers are automatically detected and accommodated in the analysis. Note that some probe sets in the contaminated region are not marked as array outliers, because contamination contributed additively to PM and MM in a similar magnitude and thus cancel in the PM–MM differences, preserving the correct signals and probe patterns.

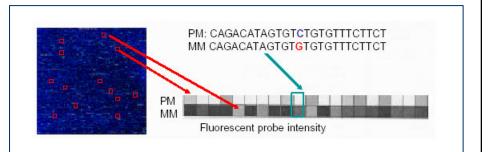
PNAS | January 2, 2001 | vol. 98 | no. 1 | 33

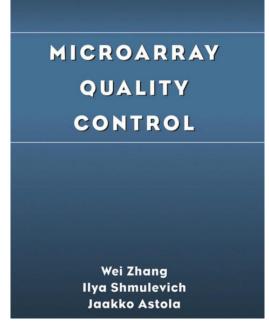
B2 Oligo Performance

- Make sure the alignment of the grid was done appropriately.
- Look at the spiked in Oligo B2 control in order to check the hybridization uniformity.
- The border around the array, the corner region, the control regions in the center, are all checked to make sure the hybridization was successful.



Affymetrix CEL File Image- Yellow squares highlighting various Oligo B2 control regions: (A) one of the corner regions, (B) the name of the array, and (C) the "checkerboard" region.


Source: Baylor College of Medicine, Microarray Core Facility


RNA Degradation Plots

Assessment of RNA Quality:

3'

MAS5.0 Expression Report File (*.RPT)

Report Type:Expression ReportDate:04:42PM 02/24/2004Filename:test.CHBProbe Array Type:HG-U133AAlgorithm:StatisticalProbe Pair Thr:8Controls:Antisense			 The Scaling Factor- In general, the scaling factor should be around three, but as long as it is not greater than five, the chip should be okay. The scaling factor (SF) should remain 					
Alpha1: Alpha2: Tau: Noise (RawQ): Scale Factor (SF): TGT Value: Norm Factor (NF):	0.05 0.065 0.015 2.250 5.422 500 1.000		consistent a	 cross the experiment. Average Background: 20-100 Noise < 4 				
Background: Avg: 64.23 Noise: Avg: 2.54 Corner+	Std: 1.75 Std: 0.14	Min: 59.50 Min: 2.10	Max: 67.70 Max: 3.00					
Avg: 49 Corner- Avg: 5377 Central- Avg: 4845	Count: 32 Count: 32 Count: 9		e Noise values s	e (RawQ), Average Background and should remain consistent across the				

12/57

The following data represents probe sets that exceed the probe pair threshold and are not called "No Call".

Total Probe Sets: 22283 Number Present: 9132 41.0% Number Absent: 12766 57.3% Number Marginal: 385 1.7%	Percent Present : 30~50%, 40~50%, 50~70%. (should be consistent)
Average Signal (P): 1671.0 Average Signal (A): 119.6 Average Signal (M): 350.1 Average Signal (All): 759.3	Low percent present may also indicate degradation or incomplete synthesis.

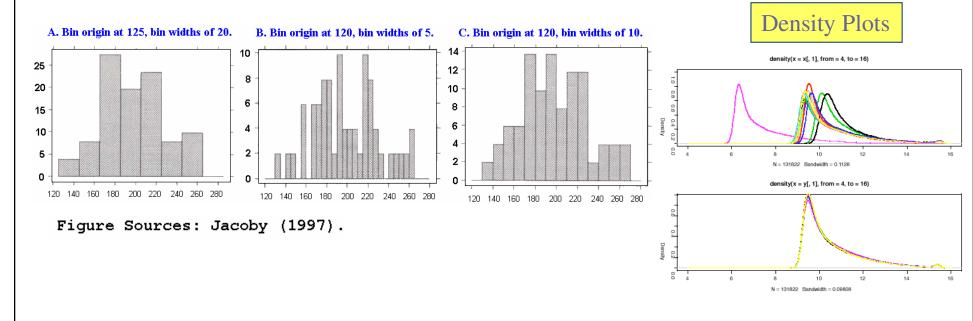
MAS5.0 Expression Report File (*.RPT)

■ Sig (3'/5')- This is a ratio which tells us how well the labeling reaction went. The two to really look at are your 3'/5' ratio for GAPDH (around 1) and B-ACTIN (around 3).

Spike-In Controls (BioB, BioC, BioD, Cre)- These spike in controls also tell how well your labelling reaction went. BioB is only Present half of the time, but BioC, BioD, & Cre should always have a present (P) call.

Housekeeping Controls:								
Probe Set	Sig(5')			Det(M')		Det(3')	Sig(all)	Sig(3'/5')
AFFX-HUMISGF3A/M97935	272.8	P	856.8	P	1274.5	P	801.36	4.67
AFFX-HUMRGE/M10098	340.6	м	181.3	A	632.6	P	384.80	1.86
AFFX-HUMGAPDH/M33197	13890.6		15366.6	-	14060.7	-	14439.32	1.01
AFFX-HSAC07/X00351	35496.8	P	39138.0	P	31375.0	P	35336.61	0.88
AFFX-M27830	469.2	P	2206.1	A	114.3	A	929.86	0.24
Spike Controls:								
Probe Set	Sig(5')	Det(5')	Sig(M')	Det(M')	Sig(3')	Det(3')	Sig(all)	Sig(3'/5')
AFFX-BIOB	559.0	P	801.6	P	385.8	P	582.14	0.69
AFFX-BIOC	1132.9	P			818.0	P	975.47	0.72
AFFX-BIOD	874.7	P			6918.1	P	3896.42	7.91
AFFX-CRE	10070.5	P			16198.0	P	13134.27	1.61
AFFX-DAP	10.9	A	60.9	A	8.5	A	26.75	0.78
AFFX-LYS	51.5	A	86.2	A	14.1	A	50.62	0.27
AFFX-PHE	4.9	A	4.0	A	40.0	A	16.30	8.20
AFFX-THR	20.3	A	53.2	A	18.7	A	30.77	0.92
AFFX-TRP	9.8	A	11.1	A	2.7	A	7.86	0.28
AFFX-R2-EC-BIOB	497.6	P	928.0	P	479.4	P	634.98	0.96
AFFX-R2-EC-BIOC	1319.9	P			1705.0	P	1512.50	1.29
AFFX-R2-EC-BIOD	4744.0	P			4865.7	P	4804.82	1.03
AFFX-R2-P1-CRE	25429.2	P			30469.5	P	27949.37	1.20
AFFX-R2-BS-DAP	5.9	A	1.6	A	3.3	A	3.58	0.55
AFFX-R2-BS-LYS	32.2	A	43.7	м	74.7	P	50.18	2.32
AFFX-R2-BS-PHE	14.8	A	27.5	A	146.5	A	62.91	9.93
AFFX-R2-BS-THR	209.5	P	152.9	A	15.8	A	126.08	0.08

Suggestions


- Affymetrix arrays with high background are more likely to be of poor quality.
 - Cutoff would be to exclude arrays with a value more than 100.
- Raw noise score (Q): a measure of the variability of the pixel values within a probe cell averaged over all of the probe cells on an array.
 - Exclude those arrays that have an unusually high Q-value relative to other arrays that were processed with the same scanner.
- BioB: is included at a concentration that is close to the level of detection of the array, and so should be indicated as present about 50% of the time.
- Other spike controls are included at increasingly greater levels of concentration. Therefore, they should all be indicated as present, and also should have increasingly large signal values:
 - Signal(bioB) < Signal(bioC) < Signal(bioD) < Signal(cre)</p>

Statistical Plots: Histogram

- 1/2h adjusts the height of each bar so that the total area enclosed by the entire histogram is 1.
- The area covered by each bar can be interpreted as the probability of an observation falling within that bar.

Disadvantage for displaying a variable's distribution:

- selection of origin of the bins.
- selection of bin widths.
- the very use of the bins is a distortion of information because any data variability within the bins cannot be displayed in the histogram.

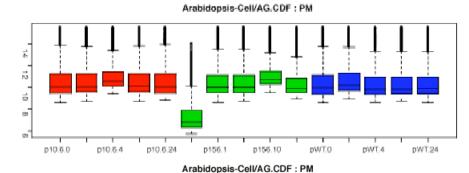
O. Bin origin at 120, bin widths of 20.

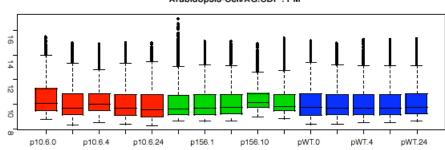
140 160 180 200 220 240 260

Medical Program Quality Score

280

20


Percent of Total 9 01 05

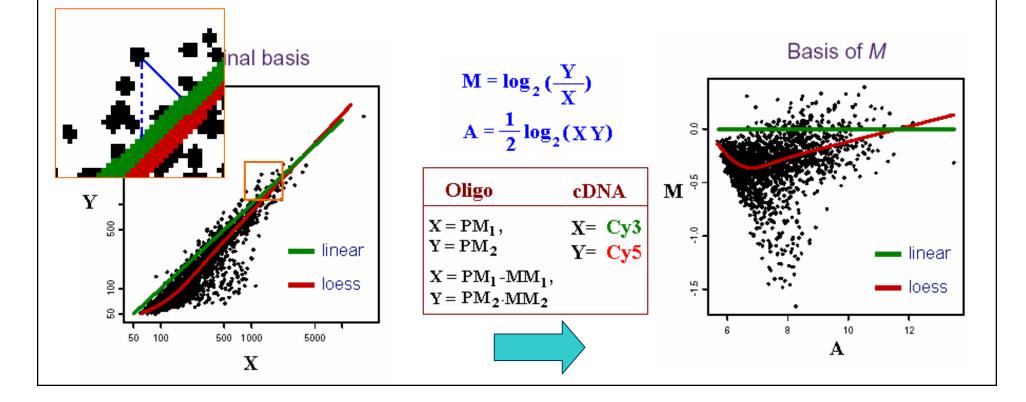

0

120

Statistical Plots: Box Plots

- Box plots (Tukey 1977, Chambers 1983) are an excellent tool for conveying location and variation information in data sets.
- For detecting and illustrating location and variation changes between different groups of data.

30000 300 0 whisker Medical Program Quality Score outside Maximum values 250 20000 3rd quartiles 0 → Upper Outer Fence: 200 IOR Median $x_{0.75} + 3 IQR$ 1st 10000 quartiles Upper Inner Fence: 150 $x_{0.75} + 1.5 IQR$ Minimum Lower Inner Fence: 100 x_{0.25} - 1.5 IQR n Lower Outer Fence: Further reading: x_{0.25} - 3 IQR http://www.itl.nist.gov/div898/handbook/eda/section3/boxplot.htm

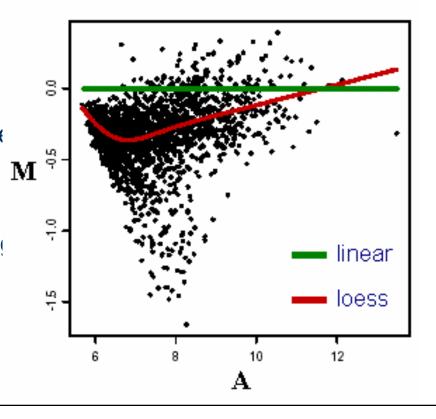

The box plot can provide answers to the following questions:

- Is a factor significant?
- Does the location differ between subgroups?
- Does the variation differ between subgroups?
- Are there any outliers?

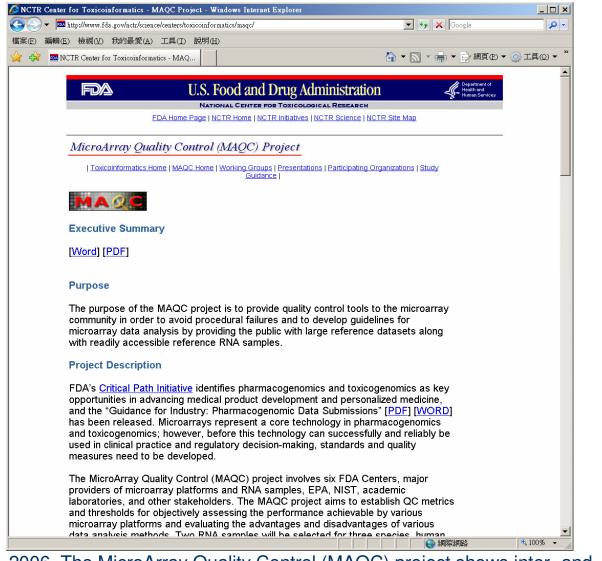
Scatterplot and MA plot

Features of scatterplot.

- the substantial correlation between the expression values in the two conditions being compared.
- the preponderance of low-intensity values. (the majority of genes are expressed at only a low level, and relatively few genes are expressed at a high level)
- Goals: to identify genes that are differentially regulated between two experimental conditions.


Scatterplot and MA plot (conti.)

- MA plots can show the intensity-dependent ratio of raw microarray data.
 - x-axis (mean log2 intensity): average intensity of a particular element across the control and experimental conditions.
 - y-axis (ratio): ratio of the two intensities. (fold change)


Basis of M

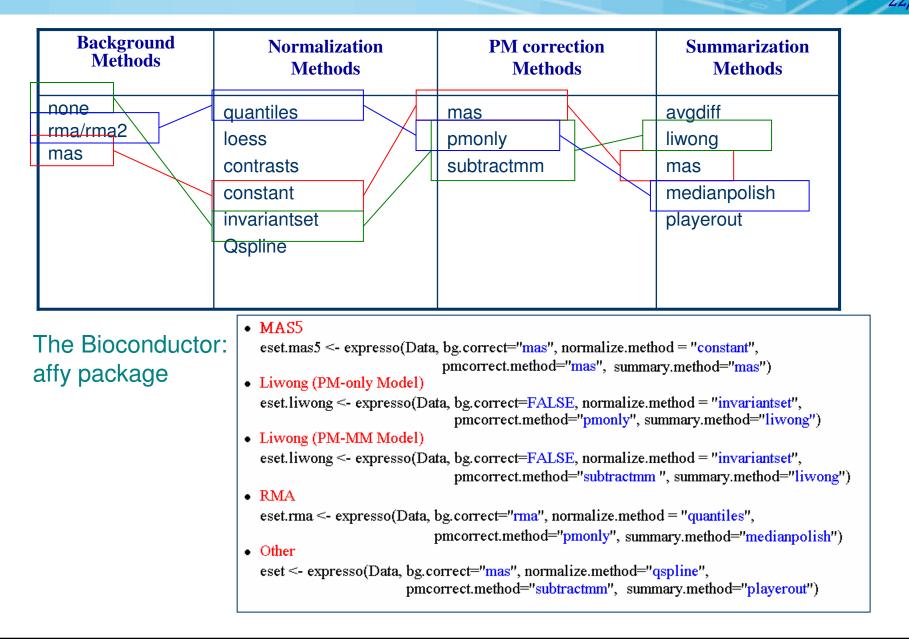
Outliers in logarithm scale

- spreads the data from the lower left corner to a more centered distribution in which the prosperities of the data are easy to analyze.
- easier to describe the fold regulation of genes using a log scale. In log2 space, the data points are symmetric about 0.

MAQC project

MAQC Consortium, 2006, The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nature Biotechnology 24(9):1151-61.

QC Reference


- G. V. Cohen Freue, Z. Hollander, E. Shen, R. H. Zamar, R. Balshaw, A. Scherer, B. McManus, P. Keown, W. R. McMaster, and R. T. Ng, 2007, MDQC: a new quality assessment method for microarrays based on quality control reports, Bioinformatics 23(23): 3162 - 3169.
- Steffen heber and Beate Sick, 2006, Quality Assessment of Affymetrix GeneChip Data, OMICS A Journal of Integrative Biology, Volume 10, Number 3, 358-368.
- Kyoungmi Kim, Grier P Page, T Mark Beasley, Stephen Barnes, Katherine E Scheirer and David B Allison, 2006, A proposed metric for assessing the measurement quality of individual microarrays, BMC Bioinformatics 7:35.
- Claire L. Wilson and Crispin J. Miller, 2005, Simpleaffy: a BioConductor package for Affymetrix Quality Control and data analysis, Bioinformatics 21: 3683 3685.
- affyQCReport: A Package to Generate QC Reports for Affymetrix Array Data
 affyPLM: Model Based QC Assessment of Affymetrix GeneChips

Red color: R package at Bioconductor.

Low level Analysis

- Background correction (local vs. global)
- Normalization (baseline array vs. complete data)
- PM Correction
- Summarization [Expression Index] (single vs. multiple chips)

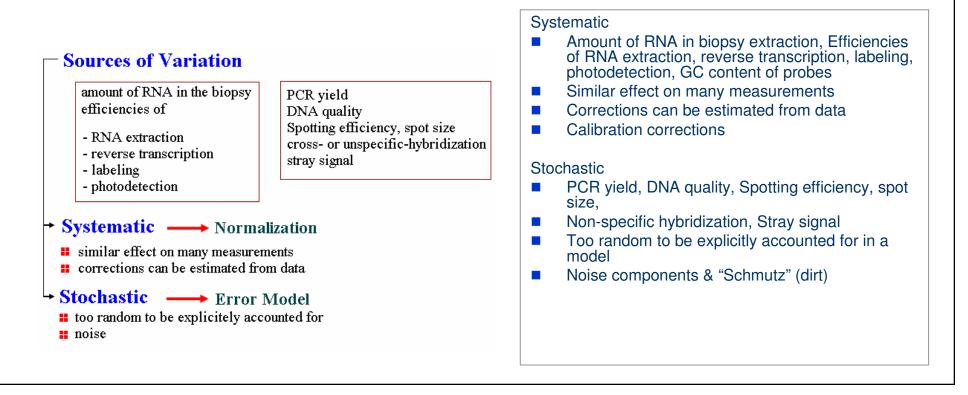
Low level analysis

1. Background Correction

What is background?

- A measurement of signal intensity caused by auto fluorescence of the array surface and non-specific binding.
- Since probes are so densely packed on chip must use probes themselves rather than regions adjacent to probe as in cDNA arrays to calculate the background.
- In theory, the MM should serve as a biological background correction for the PM.

What is background correction?


A method for removing background noise from signal intensities using information from only one chip.

		$\mathbf{P}\mathbf{M}$
	· · · · ·	MM

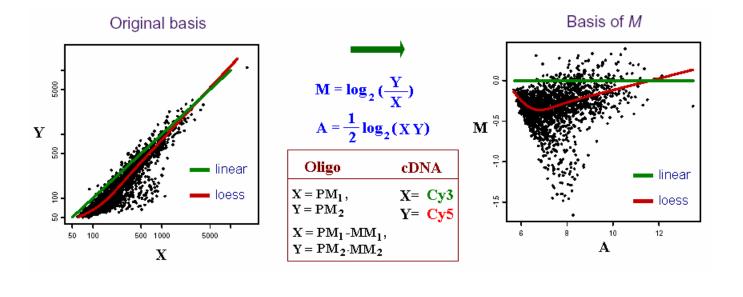
2. Normalization

What is Normalization?

- Non-biological factor can contribute to the variability of data, in order to reliably compare data from multiple probe arrays, differences of non-biological origin must be minimized.
- Normalization is a process of reducing unwanted variation across chips. It may use information from multiple chips.

Why Normalization?

Normalization corrects for overall chip brightness and other factors that may influence the numerical value of expression intensity, enabling the user to more confidently compare gene expression estimates between samples.


Main idea

Remove the systematic bias in the data as completely possible while preserving the variation in the gene expression that occurs because of biologically relevant changes in transcription.

Assumption

The average gene does not change in its expression level in the biological sample being tested.

Most genes are not differentially expressed or up- and down-regulated genes roughly cancel out the expression effect.

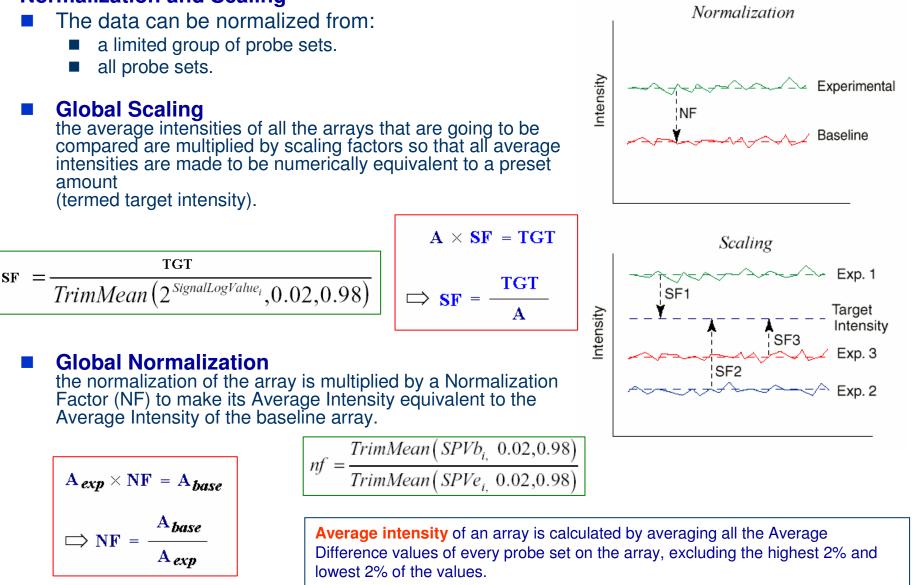
The Options on Normalization

Levels

PM&MM, PM-MM, Expression indexes

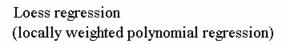
Features

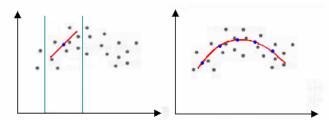
All, Rank invariant set, Spike-ins, housekeeping genes.

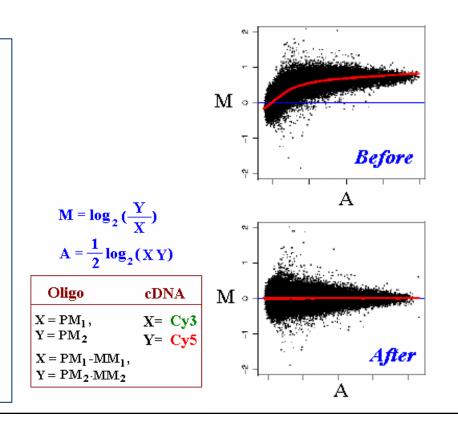

Methods

Complete data: no reference chip, information from all arrays used: Quantiles Normalization, MVA Plot + Loess

Baseline: normalized using reference chip: MAS 4.0, MAS 5.0, Li-Wong's Model-Based, Qspline


Constant Normalization


Normalization and Scaling



LOESS Normalization

- Loess normalization (Bolstad *et al.*, 2003) is based on MA plots. Two arrays are normalized by using a lowess smoother.
- Skewing reflects experimental artifacts such as the
 - contamination of one RNA source with genomic DNA or rRNA,
 - the use of unequal amounts of radioactive or fluorescent probes on the microarray.
- Skewing can be corrected with local normalization: fitting a local regression curve to the data.

- **1.** For any two arrays i, j with probe intensities x_{ki} and x_{kj} where $k = 1, \ldots, p$ represents the probe
- 2. we calculate

$$M_k = \log_2(x_{ki}/x_{kj})$$
 and $A_k = \frac{1}{2}\log_2(x_{ki}x_{kj})$.

3. A normalization curve is fitted to this M versus A plot using loess.

Loess is a method of local regression (see Cleveland and Devlin (1988) for details).

- 4. The fits based on the normalization curve are \hat{M}_k
- 5. the normalization adjustment is $M'_k = M_k \hat{M}_k$.
- 6. Adjusted probe intensites are given by $x'_{ki} = 2^{A_k + \frac{M'_K}{2}}$ and $x'_{ki} = 2^{A_K - \frac{M'_k}{2}}$.

3. PM Correction Methods

PM only

make no adjustment to the PM values.

Subtract MM from PM

This would be the approach taken in MAS 4.0 Affymetrix (1999). It could also be used in conjuntion with the liwong model.

ble 1: Summary	Table		
Method	Assumptions	Benefits	Drawbacks
PM-MM	Background effects are large and potentially variable between features across experiments relative to effects of interest	Background effects minimized due to low bias Sensitivity to low expressors	Slightly noisier when signal is higher than background
PM-B	Features have approximately the same background	Low noise	May not represent all probe sets accurately, typically leading to underestimated differential change
PM Only	Background variation is insignificant	Low noise Approximately constant CV	All probe sets biased Compression of differential change at the low end
MM treated as additional PM	Background variation is insignificant Abundances moderate to large	Added statistical power Low noise Constant CV	All probe sets biased Compression of differential change at the low end

Affymetrix: Guide to Probe Logarithmic Intensity Error (PLIER) Estimation. Edited by: Affymetrix I. Santa Clara, CA, ; 2005.

4. Expression Index Estimates

Summarization

- Reduce the 11-20 probe intensities on each array to a single number for gene expression.
- The goal is to produce a measure that will serve as an indicator of the level of expression of a transcript using the PM (and possibly MM values).
- The values of the PM and MM probes for a probeset will be combined to produce this measure.

Single Chip

- avgDiff : no longer recommended for use due to many flaws.
- Signal (MAS5.0): use One-Step Tukey biweight to combine the probe intensities in log scale
- average log 2 (PM BG)

Multiple Chip

- MBEI (li-wong): a multiplicative model
- RMA: a robust multi-chip linear model fit on the log scale

Three Well-Known Methods

MAS5 & PLIER
Li-Wong Model
RMA/GC-RMA

MAS5 & PLIER (Affymetrix, 2005)

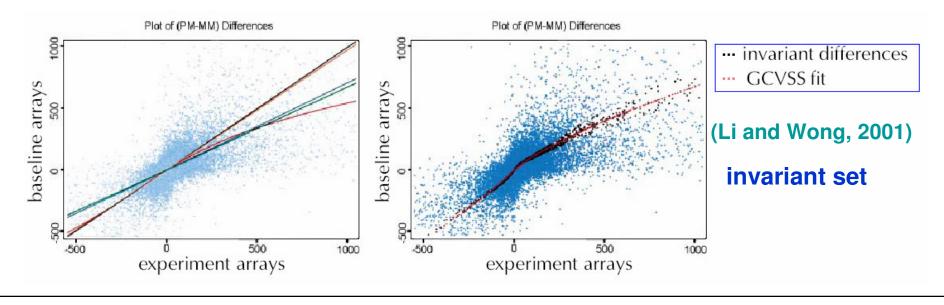
Guide to Probe Logarithmic Intensity Error (PLIER) Estimation

	Previous Generation	2.0 Platform
Array Technology	 18-µm features Edge minimization mask strategy 	• 11-µm features • Chrome setback mask design strategy • ARC
Image Analysis	Global gridding	Feature extraction (in addition to global gridding)
Data Management	MAS / LIMS	GCOS Client / Server
Analysis	MAS Statistical Algorithm	GREX including PLIER algorithm (in addition to MAS Statistical Algorithm)
Scanning Technology	GeneArray® 2500 or GeneChip® Scanner 3000	GeneChip® Scanner 3000 (high resolution)
Fluidics	Fluidics Station 400/Fluidics Station 450	Fluidics Station 450
AutoLoader	Not available on GeneArray® 2500 (optional for GeneChip® Scanner 3000)	Optional for GeneChip® Scanner 3000
Reagents	3rd-party cDNA reagentsEnzo labeling kits	 GeneChip[®] One- and Two-Cycle cDNA Kits GeneChip[®] IVT Labeling Kit

32

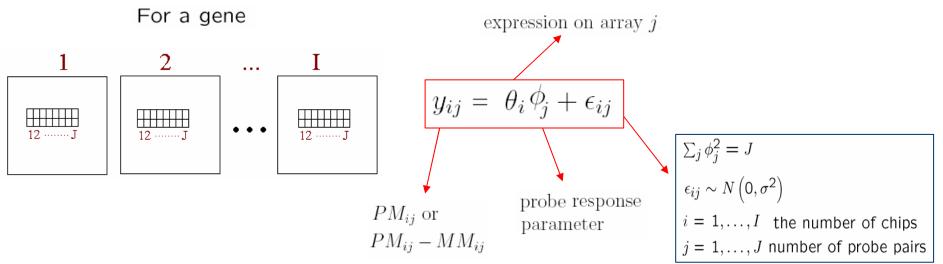
Affymetrix: Guide to Probe Logarithmic Intensity Error (PLIER) Estimation. Edited by: Affymetrix I. Santa Clara, CA, ; 2005.

Liwong: Normalization


Liwong (PM-only Model)

eset.liwong <- expresso(Data, bg.correct=FALSE, normalize.method = "invariantset", pmcorrect.method="pmonly", summary.method="liwong")

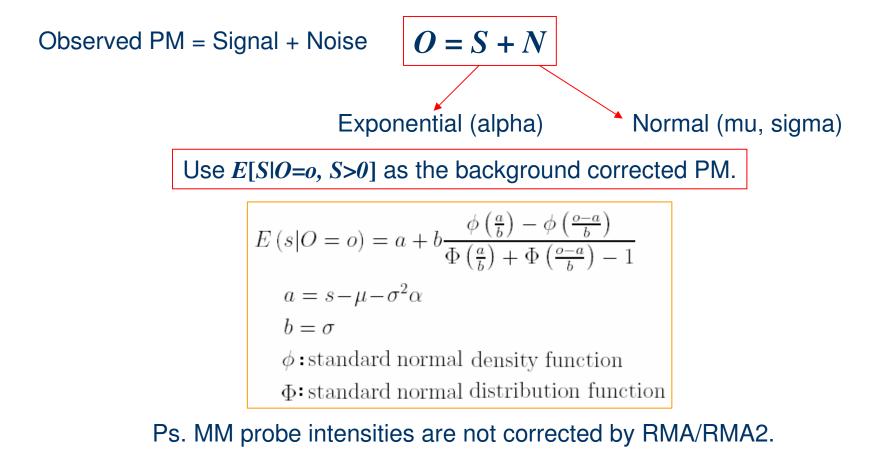
Liwong (PM-MM Model)


eset.liwong <- expresso(Data, bg.correct=FALSE, normalize.method = "invariantset", pmcorrect.method="subtractmm", summary.method="liwong")

- Using a baseline array, arrays are normalized by selecting invariant sets of genes (or probes) then using them to fit a *non-linear relationship* between the "treatment" and "baseline" arrays.
- A set of probe is said to be invariant if ordering of probe in one chip is same in other set.
- Fit the non-linear relation using cross validated smoothing splines (GCVSS).

Liwong: Summarization Method

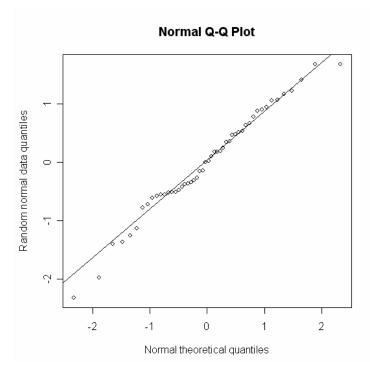
(Model-Based Expression Index, MBEI)



- θ i: this model computes an expression level on the ith array.
- SE(θ) 's and SE(φ) 's: can be used to identify outlier arrays and probes that will consequently be excluded from the final estimation of the probe response pattern.
- Outlier array: large SE(θ i), possibly due to external factors like the imaging process.
- Outlier probe: large SE(ϕ j), possibly due to non-specific cross-hybridization.
- Single outliers: individual PM-MM differences might also be identified by large residuals compared with the fit. (these are regarded as missing values in the model-fitting algorithm).

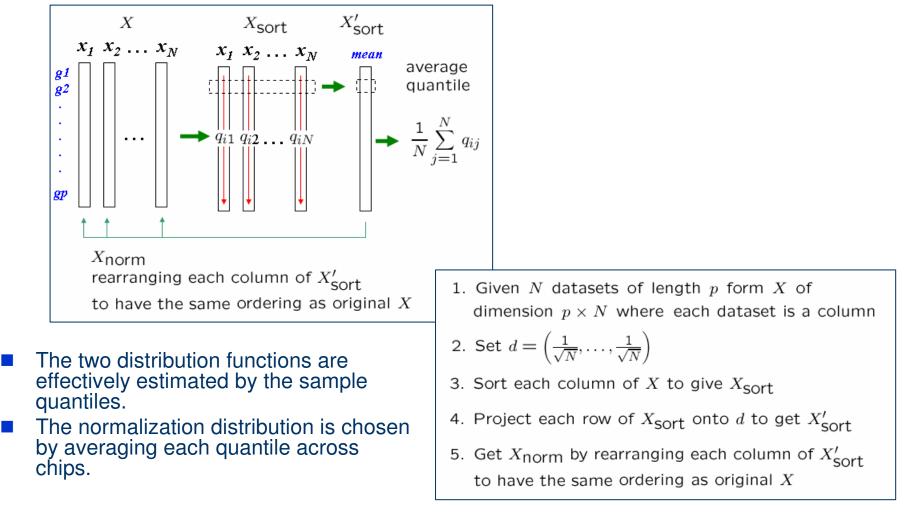
RMA: Background Correction


RMA: Robust Multichip Average (Irizarry and Speed, 2003): assumes PM probes are a convolution of Normal and Exponential.



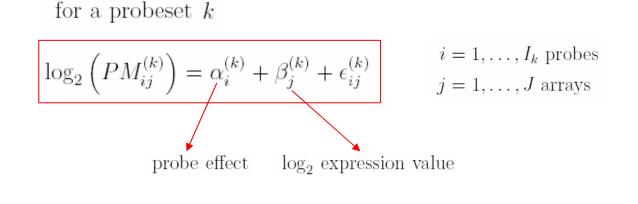
Quantiles

The qth quantile of a data set is defined as that value where a q fraction of the data is below that value and (1-q) fraction of the data is above that value. For example, the 0.5 quantile is the median.



A quantile-quantile plot (or q-q plot) is a graphical data analysis technique for comparing the distributions of 2 data sets.

RMA: Normalization


- Quantiles Normalization (Bolstad *et al*, 2003) is a method to make the distribution of probe intensities the same for every chip.
- Each chip is really the transformation of an underlying common distribution.

RMA: Summarization Method

MedianPolish

- This is the summarization used in the RMA expression summary Irizarry et al. (2003).
- A multichip linear model is fit to data from each probeset.
- The medianpolish is an algorithm (see Tukey (1977)) for fitting this model robustly.
- Please note that expression values you get using this summary measure will be in log2 scale.

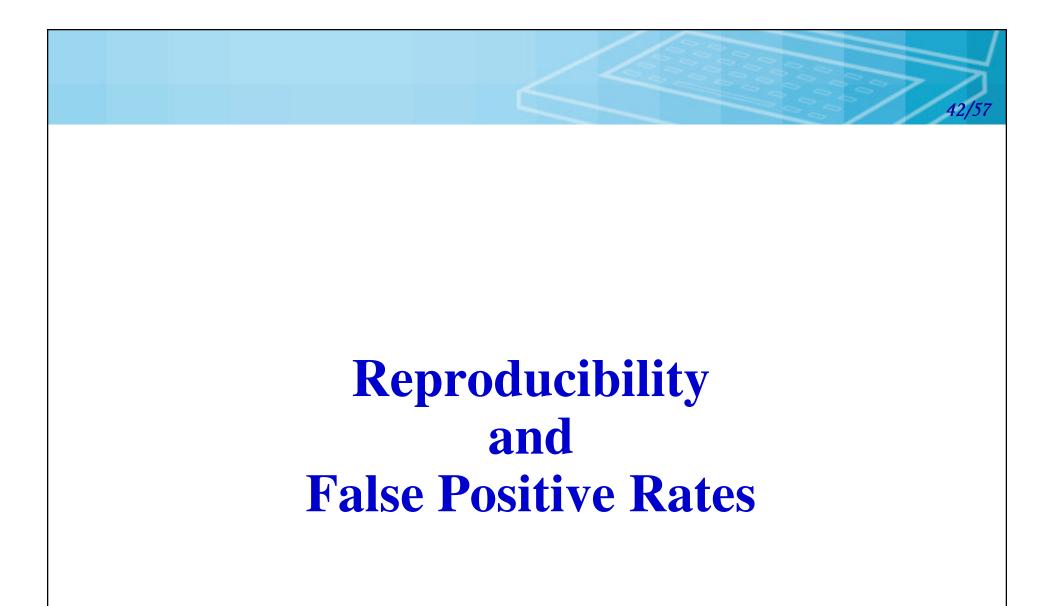
GC-RMA 39 Robust multi-chip average with GC-content background correction Background correction: account for background noise as well as nonspecific binding. quantity proportional to RNA expression optical noise, logNormal $PM = O_{PM} + N_{PM} + S,$ $MM = O_{MM} + N_{MM}$ Observed PM, MM non-specific binding noise, Bi-variate Normal

Ps. Probe affinity is modeled as a sum of position-dependent base effects and can be calculated for each PM and MM value, based on its corresponding sequence information.

Zhijin Wu; Rafael A. Irizarry; Robert Gentleman; Francisco Martinez-Murillo; Forrest Spencer, 2004, A Model-Based Background Adjustment for Oligonucleotide Expression Arrays, Journal of the American Statistical Association 99(468), 909-917.

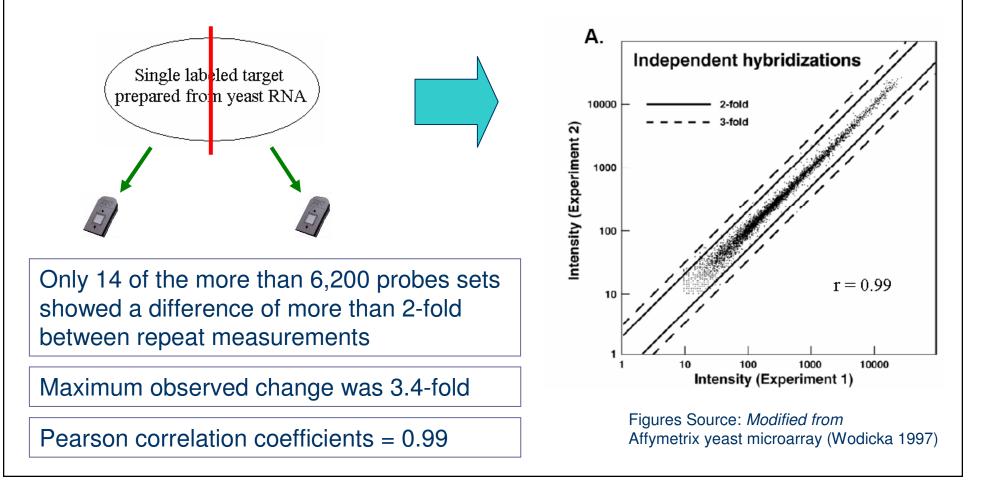
Comparison of Affymetrix GeneChip Expression Measures

Affycomp II: A Benchmark for Affymetrix GeneChip Expression Measures - Microsoft Internet Explorer											
檔案(F) 編輯(E) 檢視(V) 我的最愛(A) 工具(T) 説明(H) 					1. Download the only in and dilution data pate						
エータ 1244 An Jaco Mail 網址(D) 創 http://affycomp.biostat.jhsph.edu/				1. Download the spike-in and dilution data sets.							
				o Spike-in hgu95a Data							
	Affycomp II				opine-in rige	1004 0					
A Benchmark for Affymetrix GeneChip Expression Measures											
A benchmark for Anymetrix Genecing Expression measures					Method	SD	99.9%	1000	slope med	high	AUC
					Wethod	3D	99.970	low	mea	high	AUC
• <u>Background</u>	dilution study	y (GeneLogic)			GCRMA	0.08	0.74	0.66	1.06	0.56	0.70
Data and instructions		y (Affymetrix)			GS_GCRMA	0.10	0.74	0.62	1.00	0.55	0.66
Submission form	spike-ili stuu	y (Anymetrix)			MMEI	0.04	0.23	0.16	0.54	0.46	0.62
• Submission form					GL	0.05	0.25	0.16	0.55	0.46	0.62
	Method / Submitter <u>1</u> <u>2</u> <u>3</u>	<u>4 5 6 7 8 9 10 11 12 13</u>	14		RMA_NBG	0.04	0.24	0.16	0.56	0.46	0.61
• new assessment (of SPIKE-	(perfection) 0.00 0.00 i	.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0 1.0		RSVD	0.00	0.58	0.42	0.85	0.40	0.61
 original assessment (of DIL 1 	<u>MAS_5.01 rafa</u> 0.29 0.47 4.01 (0.0		ZL	0.22	0.52	0.35	0.71	0.45	0.61
o entry comparison tool (beta	<u>RMA / rafa</u> 0.07 0.13 0.40 (6 0.6		VSN_scale	0.09	0.43	0.28	0.91	0.70	0.59
• study archives	4 VSN / thomas.cappola 0.02 0.04 0.15 0 rsvd / jack liu 0.14 0.12 0.73 0				VSN	0.06	0.28	0.18	0.6	0.46	0.59
	<u>rsvd / jack liu</u> 0.14 0.12 0.73 (<u>rsvd.pm / jack liu</u> 0.06 0.11 0.34 (1 0.5 6 0.5		RMA_VSN	0.09	0.48	0.31	0.74	0.46	0.57
		0.50 0.50 0.72 0.55 0.77 0.55 0.10 0.42 0.56 0.5			GLTRAN	0.07	0.42	0.23	0.61	0.45	0.55
A Benchmark for Affymetrix Gen	<i>rma-sep I</i> dgreco 0.18 0.28 0.96 (3 0.42		ZAM	0.09	0.50	0.30	0.70	0.47	0.54
• R package	<u><i>LW11</i> dgreco</u> 0.08 0.14 1.18 (0.91 0.59 0.19 0.62 0.74 0.59 0.25 0.23 0.47 0.5	5 0.29		RMA_GNV	0.11	0.58	0.35	0.76	0.47	0.52
29 29	<u><i>LW21</i> dgreco</u> 0.14 0.25 13.88 (0.56 1.08 1.50 0.80 0.68 1.08 1.45 0.19 0.00 0.0	0 0.14		RMA	0.11	0.57	0.35	0.76	0.47	0.52
• <u>FAQ</u> 30	rsvd.bgc1 jack liu 0.08 0.14 0.52 (0.89 0.58 0.16 0.59 0.79 0.58 0.22 0.38 0.80 0.5	0 0.49		GSrma	0.11	0.57	0.35	0.76	0.47	0.52
Contact us			1 0.60		GSVDmod	0.07	0.44	0.22	0.64	0.42	0.51
<u>33</u>	<u>IM-Tr-Mn I jmacdon</u> 0.15 0.25 1.86 (PerfectMatch	0.05	0.40	0.18	0.56	0.43	0.50
Changered by: The Hengers Dr			6 0.65		PLIER+16	0.13	0.83	0.49	0.80	0.46	0.48
		0.93 0.93 0.37 0.96 0.96 0.93 0.55 0.59 0.87 0.5 0.91 1.00 0.25 1.13 0.97 1.00 0.48 0.45 0.91 0.5			GSVDmin	0.08	0.60	0.22	0.62	0.41	0.41
Results as of August 7, 2003 pre 36	<u>gcrma1131 zwu</u> 0.06 0.04 0.61 (<u>rsvd21 jack.liu</u> 0.17 0.28 1.74 (MAS 5.0+32	0.14	1.07	0.35	0.71	0.44	0.12
	W2371 dario.greco 0.02 0.04 0.17 (ChipMan	0.27	2.26	0.44	1.11	0.68	0.12
39 <i>R</i>	MA_NBG/bolstad001_002_006_(3 0.63		qn.p5	0.12	1.09	0.13	0.50	0.52	0.11
					dChip	0.13	1.44	0.31	0.67	0.39	0.09
http://affycomp.biosta	at.jhsph.edu/				mmgMOSgs	0.40	3.27	1.34	1.13	0.45	0.07
					gMOSv.1	0.29	3.35	0.98	1.12	0.42	0.06
Cope I M Irizarry RA Jaf	fee HA Wu 7 Snee	ed TP A benchmark for			ProbeProfi ler	0.31	18.75	1.61	1.57	0.39	0.03
Cope LM, Irizarry RA, Jaffee HA, Wu Z, Speed TP. A benchmark for				dQ	Chip PM-MM	0.23	14.83	1.40	0.86	0.35	0.02
Affymetrix GeneChip expression measures, Bioinformatics. 2004 Feb					mgMOS_gs	0.36	2.86	0.83	0.86	0.43	0.01
12;20(3):323-31.					MAS 5.0	0.63	4.48	0.69	0.81	0.45	0.00
Irizarry RA, Wu Z, Jaffee	HA Comparison of	Affymetrix GeneChin			PLIER	0.19	123.27	0.75	0.85	0.46	0.00
• • • • • • • • • • • • • • • • • • •					UM-Tr-Mn	0.32	2.92	0.58	0.83	0.42	0.00
expression measures. Bioint	formatics. 2006 Apr	expression measures. Bioinformatics. 2006 Apr 1;22(7):789-94.									

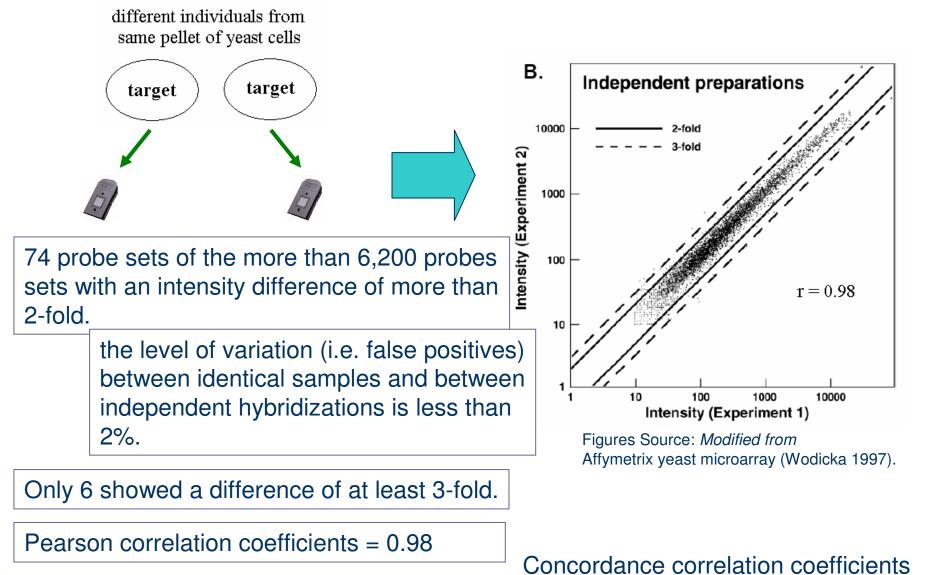

40/57

Methods Comparison

Table 2: Other analysis methods


Method	Assumptions	Benefits	Drawbacks					
PLIER	Multiple array analysis Mixed error model PM-MM, PM only etc. Multiple background options Smoothly handles intensities below background	Higher reproducibility of signal (lower coefficient of variation) without loss of accuracy relative to single array analysis Higher differential sensitivity for low expressors Lack of bias	Computationally intensive In cases where feature intensities disagree, may have more than one solution Performance relative to amount of model data provided Variance not stable on log scale					
dCHIP	Multiple array analysis Arithmetic error model PM only (stanardly) Multiple background options (no background typical)	Higher reproducibility of signal over single array analysis Good differential change detection Variance stable on log scale with no background	In cases where feature intensities disagree, may have more than one solution Performance relative to amount of model data provided Positive bias at low end (compression of Fold Change)					
RMA	Multiple array analysis Multiplicative error PM only Attenuated global background (single global background used to adjust for each intensity)	Higher reproducibility of signal over single array analysis Good differential change detection Variance stable on log scale	In cases where feature intensities disagree, may have more than one solution (mitigated by median polish) Performance relative to amount of model data provided Positive bias at low end (compression of Fold Change)					
MAS 5	Single array analysis Multiplicative error PM-MM Background imputed to handle negative differences	Conservative Smooth down-weighting of outliers Positive output values Minimal bias	Limited by single array analysis Variance not stable on log scale Some positive bias					

Affymetrix: Guide to Probe Logarithmic Intensity Error (PLIER) Estimation. Edited by: Affymetrix I. Santa Clara, CA, ; 2005.



Reproducibility

- Reproducibility (再現性) = Repeatability = Precision
- The degree to which repeat measurements of the same quantity will show the same or similar results.
- The precision is usually measured by comparing some measure of dispersion (e.g., standard deviation) with zero.

Reproducibility (conti.)

Lin L. A concordance correlation coefficient to evaluate reproducibility. Biometrics1989;45:255-268.

False Positives Rates

Comparison Expression Analysis: a pairwise comparison of all probe pairs for each transcript to identify Increase or decrease in expression between two samples.

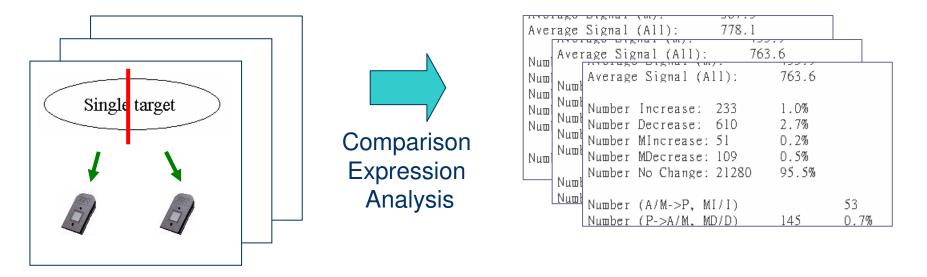


Table 2. Reproducibility Studies on Lots of Affymetrix Arrays.

GeneChip	Lot Number	Mean Percent Change	Standard Deviation
HG-U133A	1008682	0.28	0.17
	1008684	0.13	0.03
	1008685	0.52	0.06

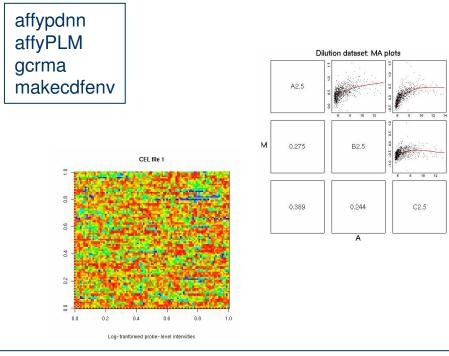
Mean Percent Change Standard Deviation

A false change is defined as the percent of transcripts that demonstrate an Increase or Decrease in expression between the two samples as determined by the ArraySuite Comparison software.

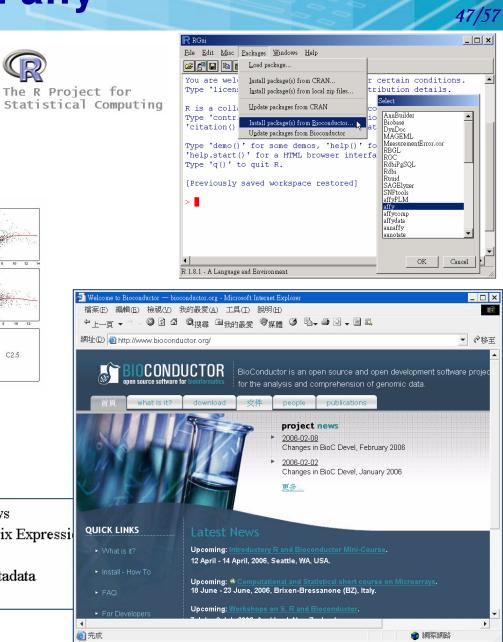
(Source = Dr. Elizabeth Kerr, Marketing Director for Gene Expression, Affymetrix, Inc.)

Software

Shareware/Freeware

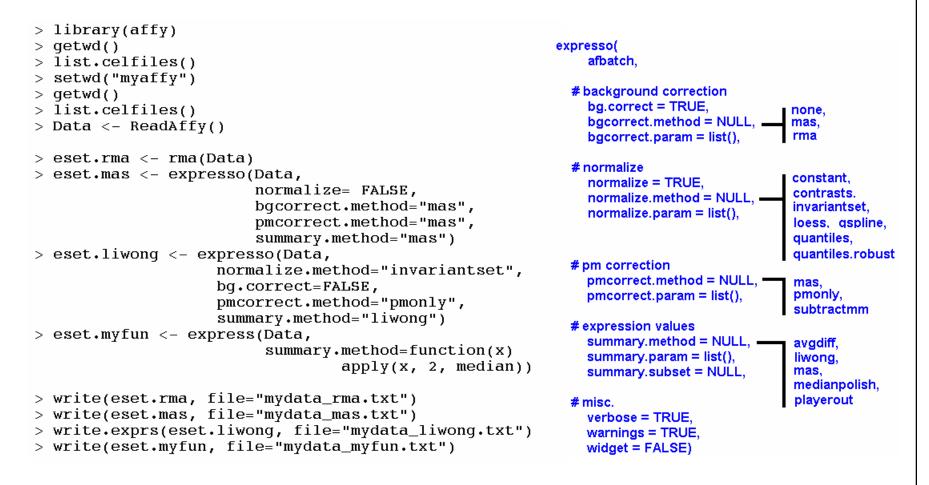

- Bioconductor (R, Gentleman)
- BRB-ArrayTools (embedded in Excel)
- DNA-Chip Analyzer (dChip) (Li and Wong)
- RMAExpress

Commercial

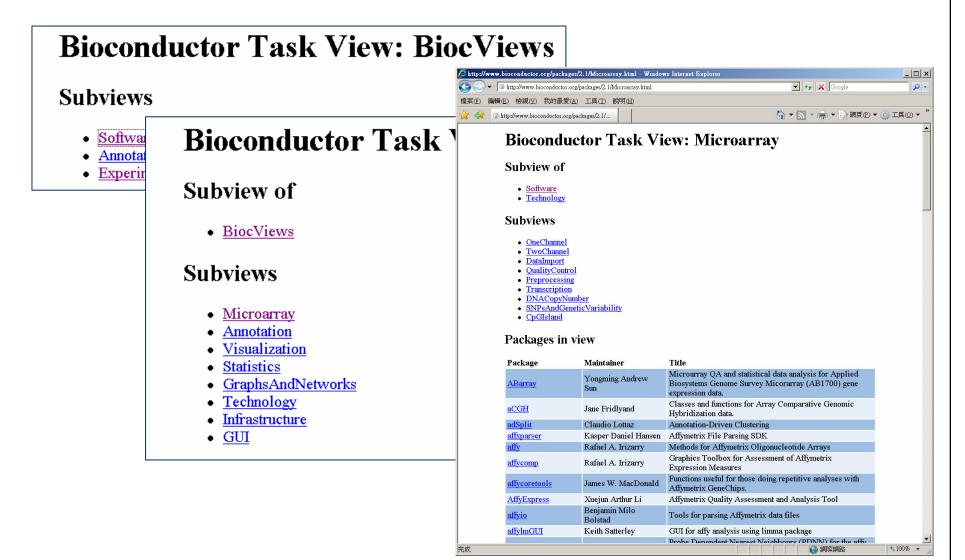

- Affymetrix GeneChip Operating Software (GCOS v1.4)
- GeneSpring GX v7.3
- Spotfire

The Bioconductor: affy

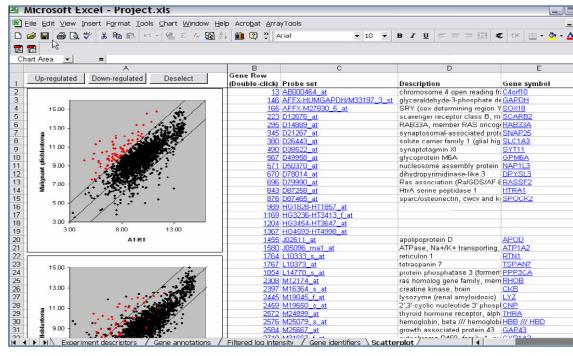
The Bioconductor Project Release 2.1 http://www.bioconductor.org/



affy Methods for Affymetrix Oligonucleotide Arrays affycomp Graphics Toolbox for Assessment of Affymetrix Expression affydata Affymetrix Data for Demonstration Purpose annaffy Annotation tools for Affymetrix biological metadata AffyExtensions For fitting more general probe level models


The Bioconductor: affy

Quick Start: probe level data (*.cel) to expression measure.


Browse the Packages by Task Views

http://www.bioconductor.org/packages/2.1/BiocViews.html

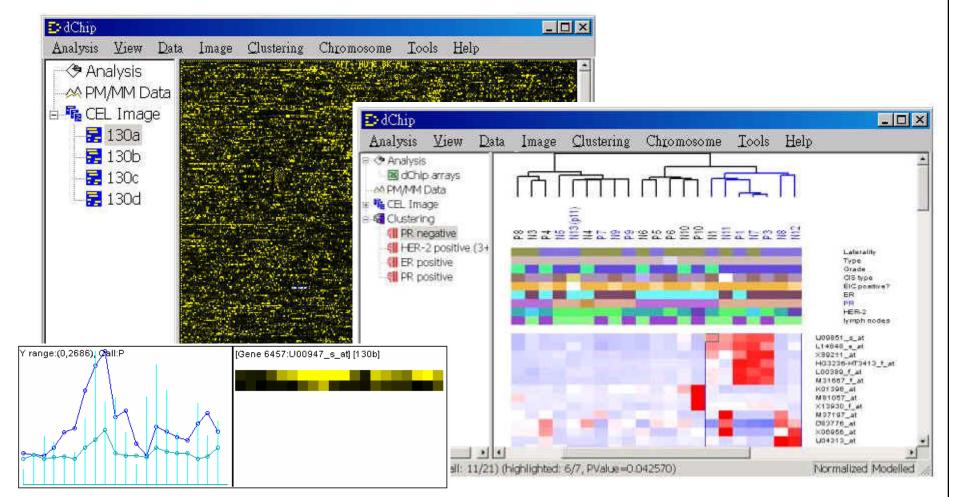
BRB-ArrayTools

An Integrated Software Tool for DNA Microarray Analysis

http://linus.nci.nih.gov/BRB-ArrayTools.html

Requirement:

- Java Virtual Machine
 R base (version 2.6.0)
- 3. RCOM 2.5

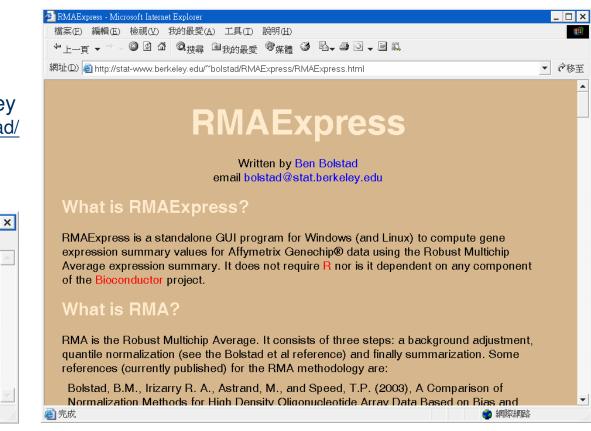

 Software was developed with the purpose of deploying powerful statistical tools for use by biologists.

 Analyses are launched from user-friendly Excel interface.

- Normalization: call RMA, GC-RMA from Bioconductor.
- Affymetrix Quality Control for CEL files: call "simpleaffy" and "affy" from Bioconductor.

DNA-Chip Analyzer (dChip)

dChip Software: Analysis and visualization of gene expression and SNP microarrays



http://www.biostat.harvard.edu/complab/dchip/

RMAExpress

Ben Bolstad Biostatistics, University Of California, Berkeley http://stat-www.berkeley.edu/~bolstad/ Talks Slides

MAExpress	_ 🗆
Eile Show About	
Welcome to RMAExpress Written by B. M. Bolstad <bolstad@stat.berkeley.edu> Version: 0.4 alpha 7</bolstad@stat.berkeley.edu>	

http://stat-www.berkeley.edu/~bolstad/RMAExpress/RMAExpress.html

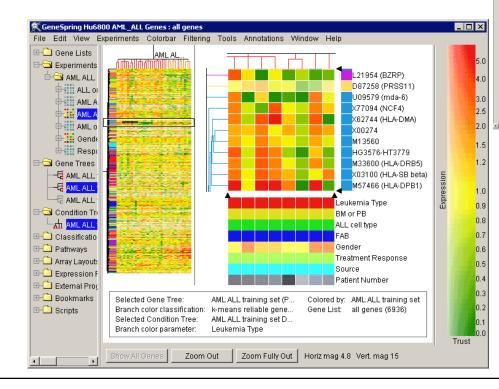
GCOS V1.4

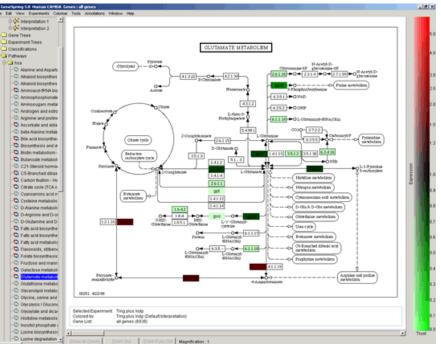
Specifications

Affymetrix GeneChip Operating Software

http://www.affymetrix.com/support/technical/software_downloads.affx

Instrument Support	 Affymetrix GeneChip[®] Fluidics Station 400 & 450 GeneChip Scanner 3000 GeneArray 2500 Scanner
Affymetrix Software Compatibility	 Support GeneChip DNA Analysis Software (GDAS) fo mapping and resequencing data analysis Support Affymetrix®Data Mining Tool software for statistical and clus analysis
Database Engine	 Microsoft Data Engine
GCOS Database	 Process Database Publish Database Gene Information Database
Database Management	 GCOS Manager GCOS Administrator
Algorithm	 Affymetrix Statistical Expression Algorithm




- LA		0200	8 9				
ta Source: Local				Descriptions			
Experimente Invage Data		Stat Pairs	Stat Pairs Used	Signal	Detection	Detection p-value	
S Callinterailea	A9000584_st	20	20	239.9	P	0.015670	AB000564, class A, 20 probes, 20 in AB000564 618-1032
Analysis Results	A8000996_at	20	20	35.1	,A,	0.772364	AB000895. class A, 20 probes, 20 in AB000895 25-395. H
	AB0000896_a/	20	20	10.5	A	0.724954	AB000996. class A. 20 probes. 20 in AB000896 49-391. H
	AB000897_at	20	20	25.5	A	0.834139	AB000897, class A, 20 probes, 20 in AB000897 43-373, H
GeneChip Software	AB000300_a/	20	20	43	A	0.987453	AB000905, class C, 20 probes, 20 in AB000905 1045-125
Serecting Solware	AB001106_w	20	20	61.Z	P	0.021902	AB001105, class A, 20 probes, 20 in AB001105 3542408
20	AB101325_wt	20	20	157.2	A	0.072700	AB001325, class A, 20 probes, 20 in AB001325 967-1387
	AB002314_et	20	20	31.0	A	0.440646	AB002314, class A, 20 probes, 20 in AB002314 6334-689
Esperiments	A8002315_et	20	20	26.0	A	0.358438	AB002315, class A, 20 probes, 20 in AB002315 4819 534
-	AB002318_et	20	20	43.9	A	0.500000	A8002318
	A8002365_w	20	20	6.3	,Å,	0.953518	AB002365
Batch Analysis	AB002366_at	20	20	18.4	A	0.991021	AB002396
~	AB002380_al	20	20	59.6	P	0.029457	AB002390
	AB002382_at	20	20	94.8	P	0.015183	A8002382
Publish .	AB002409_al	20	20	8.8	A	0.392360	AB012409
1000	AB002209_2	20	20	235	A	0.440645	AB0127219
3	AB003102_w/	20	20	191.4	P	0.000225	AB013102
S angola History	AB003103_w	20	20	30.0	A	0.470241	ABD03103
	A8003177_et	20	20	161.3	P	0.007620	AB003177
O	A8003688_et	20	20	55.1	A	0.396820	A8003696
Woldlow Monitor.	A8004984_w	20	20	33.7	A,	0.139482	AB004864
	AB006190_at	20	20	101.4	,ð,	0.131361	AB005190
<u>ee</u>	AE000061_cds2_st	20	20	17.2	A	0.914969	AC000061
Expression Arridges	AE000061_eds3_st	20	20	6.3	А	0.927300	AC000061
	AE000062_3/	20	20	22	A	0.998898	AE000052
Instrument Control	+ + Analysis Into Metrice)	Dinat Le	1	_		141	
Settings							Rose: 7129 NUM

53/5

GeneSpring GX v7.3.1

- RMA or GC-RMA probe level analysis
- Advanced Statistical Tools
- Data Clustering
- Visual Filtering
- 3D Data Visualization
- Data Normalization (Sixteen)
- Pathway Views
- Search for Similar Samples
- Support for MIAME Compliance
- Scripting
- MAGE-ML Export

Images from http://www.silicongenetics.com

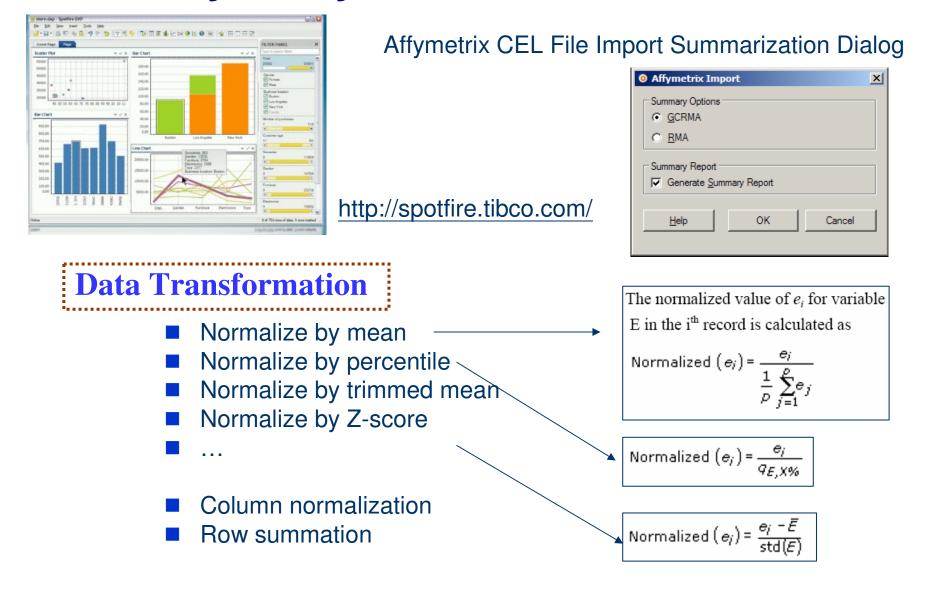
2004 Articles Citing GeneSpring®

2004 : 2003 : 2002 : 2001 : pre-2001 : Reviews

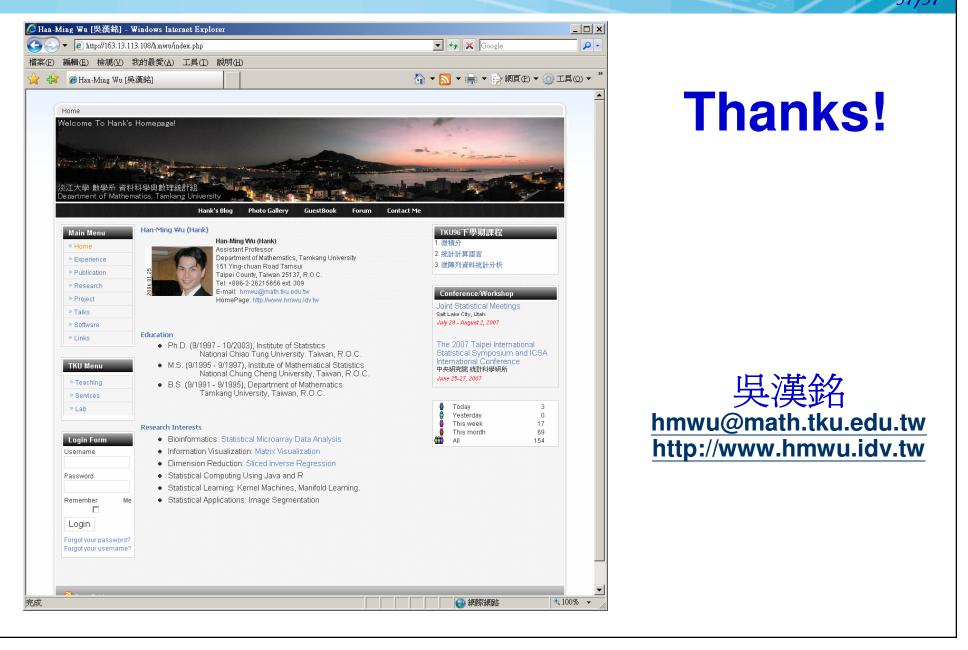
More than 700 papers

Normalization in GeneSpring

After RMA or GC-RMA analysis: ensure that these are no negative values and that the data is centered on the value 1.


- Data transformation: set measurements less than 0.01 to 0.01.
- Per-gene: normalize to 50th percentile.
- Per-gene: normalize to median.

(signal strength of gene A in sample X)


(median of every measurement taken for gene A throughout the experiment

Add Normalization Step >>		Order of Normalizations to Perform	*	Inspect
		Data Transformation: Set measurements less than 0.01 to 0.01		Delete
Choose a Normalization Step		Per Chip: Normalize to 50th percentile		Delete
Start with pre-normalized values		Per Gene: Normalize to median		Move Up
Data Transformation: SAGE transform				Move Down
Data Transformation: Real Time PCR transform				more borni
Data Transformation: Subtract background based on n				Use Defaults
Data Transformation: Set measurements less than 0.0			8	
Data Transformation: Transform from log to linear valu				
Data Transformation: Dye swap				
Per Spot. Divide by control channel				
Data Transformation: Reserve control channel				
Per Spot and Per Chip: Intensity dependent (Lowess) r				
Per Chip: Normalize to a median or percentile				
Per Chip: Normalize to positive control genes			-	
Per Chip: Normalize to a constant value	L Use	Recommended Order Get Text Description	_	
Per Gene: Normalize to specific samples				
Per Gene: Normalize to median		a Saved Scenario Save As Scenario		
Per Chip and Per Gene: Median polishing	Warn	ings		1
×		No warnings.		
_		OK Cancel Help		

TIBCO® Spotfire® DecisionSite® 9.1 for Microarray Analysis

Questions?

