

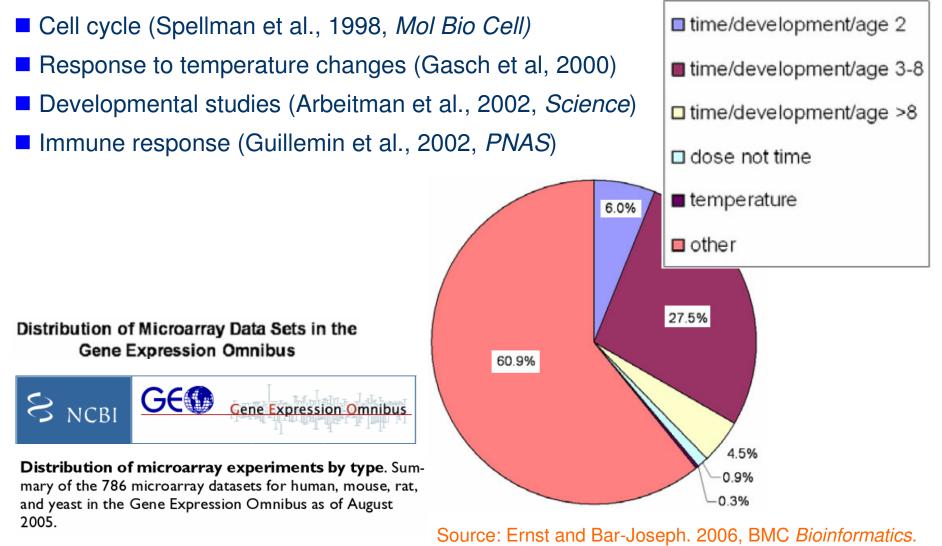
Analysis for Time Course Microarray Experiments

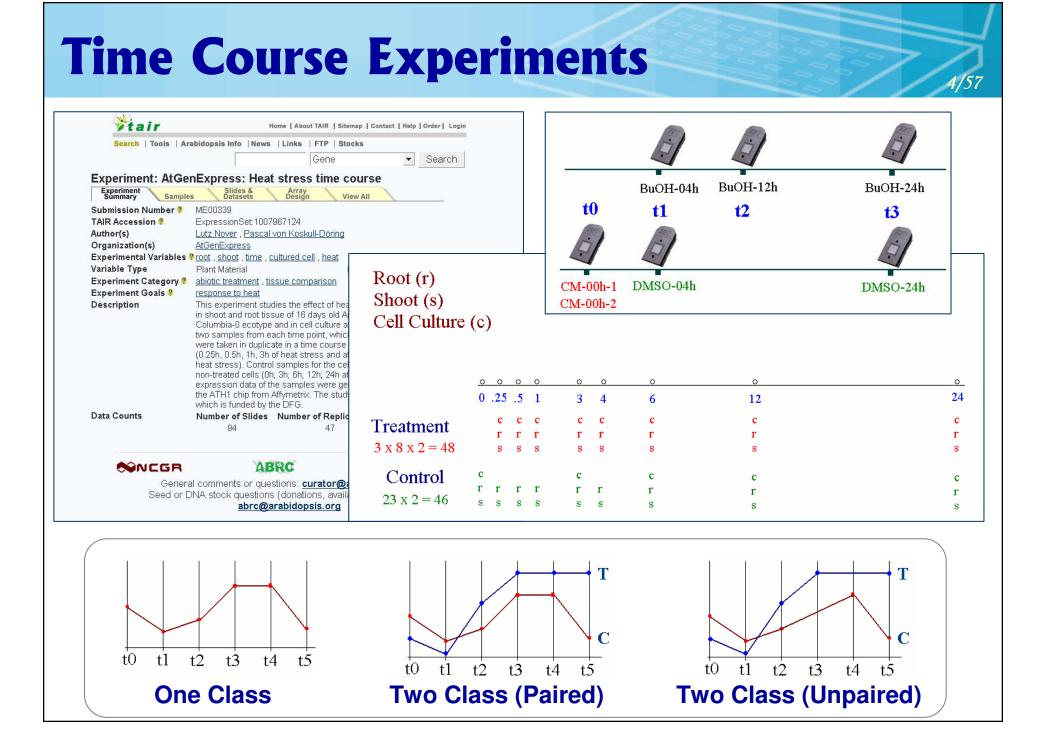
吴漢銘

hmwu@stat.sinica.edu.tw http://idv.sinica.edu.tw/hmwu

Outlines

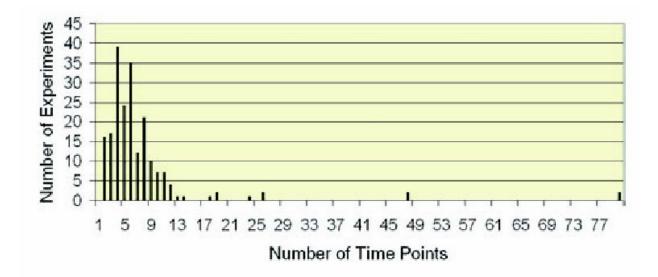
- **Time Series Microarray Experiments**
- Overview of Analyzing Software
- Some Issues
 - P-values
 - Multiple Hypothesis Testing
 - Permutation Test
 - Gene Set Enrichment Analysis
- **SAM: Significance Analysis of Microarrays**
 - Algorithm
 - Interpretation


Differential Expressed Genes


- STEM: Short Time-Series Expression Miner
 - Algorithm
 - **Example**

Clustering

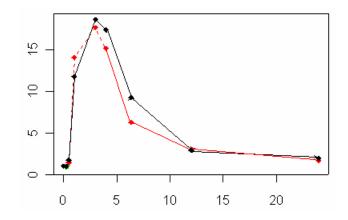
Time Series Microarray Experiments


Study dynamic biological process

Short Time Series Microarray Experiments

- About 80 % of microarray time series experiments are short:
 3-8 time points.
 - **Cost of microarray.**
 - limited availability of biological material.

Fig. 1. Distribution of lengths of times series in the SMD as of June 2004.

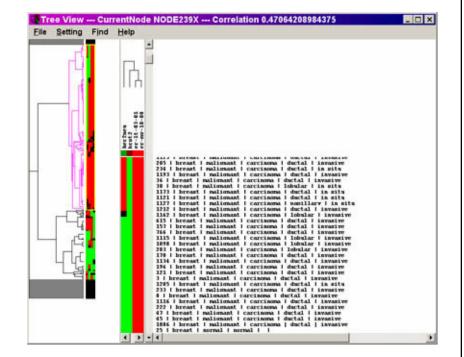

NOTE: SMD (June, 2004): ~170 published papers, ~30% are time series.

Source: Ernst et al., 2005, Bioinformatics.

Analyzing Software

Software for *Static* Gene Expression Data

- Do not take advantage of the sequential information in time series data.
- Popular clustering: hierarchical clustering, kmeans clustering, selforganizing maps.
 - ignore the temporal dependency among successive time points.
 - random permute the order of time points, the results would not change.

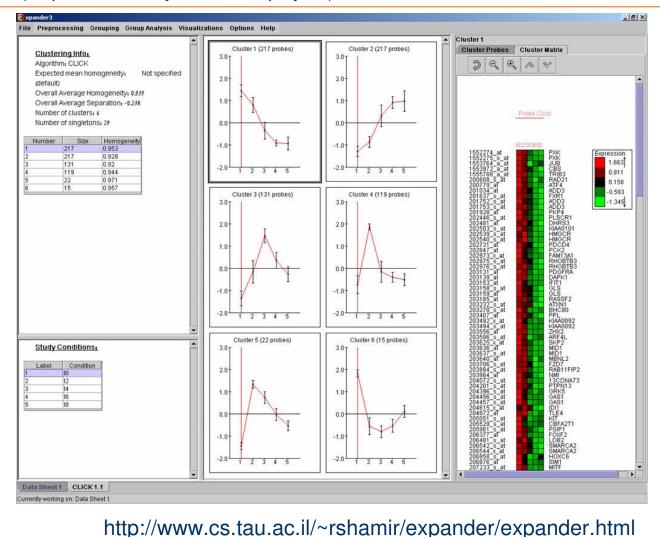

Software for *Time Series* Gene Expression Data

Software for *Static* **Gene Expression Data** (Clustering and Visualization)

Cluster & TreeView

Eisen et al., 1998, PNAS

Gene Cluster		
bout		
Input Load File File Format Help	File Loaded trad-alpha-data	
	Job Name trad-alpha-data	
Read Manual	Dataset has 20 Columns	Save
Filter Genes	lustering K Means Clustering Self Organizi	ng Maps PCA
SD (Gene Vecto		
	Observations abs(Val) >= 2	
☐ MaxVal-MinVa	>= 2	
ne Clustering		

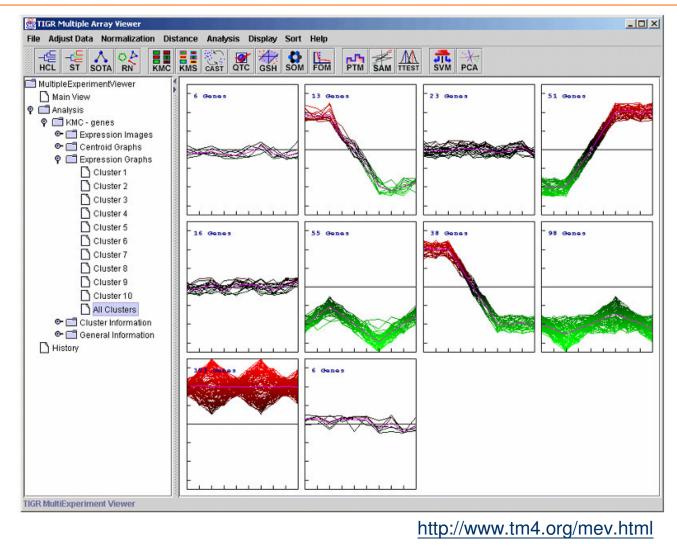

http://rana.lbl.gov/EisenSoftware.htm

Software for Static Gene Expression Data (Clustering and Visualization)

EXPANDER

8/57

(EXpression Analyzer and DisplayER) Shamir et al., 2005, BMC Bioinformatics

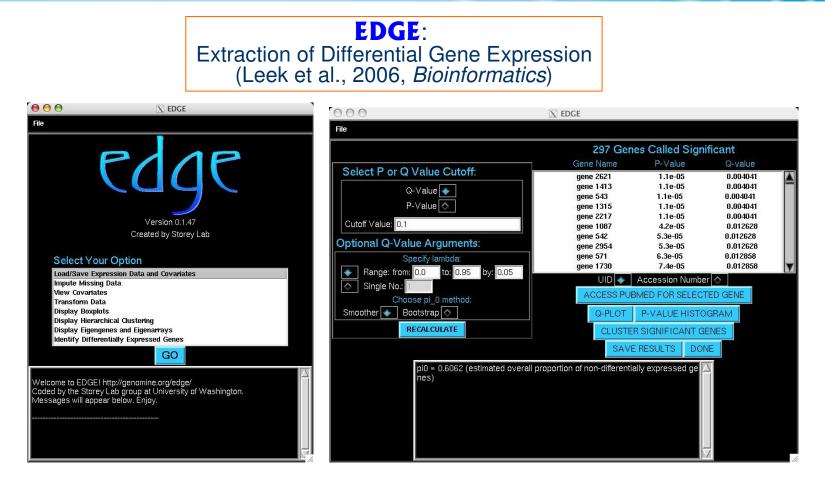


Software for Static Gene Expression Data (General Purpose)

TM4: **MeV**

9/57

(MultiExperiment Viewer) Saeed et al., 2003, Biotechniques

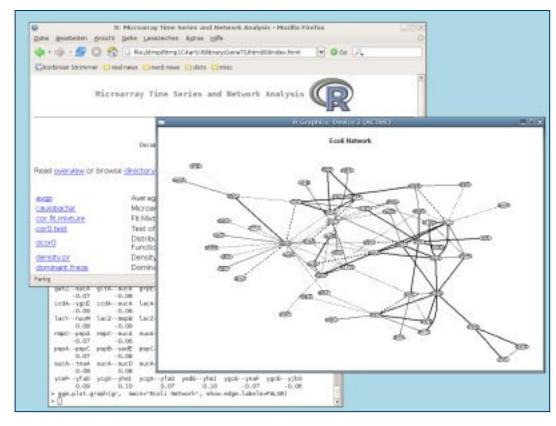


Software for *Static / Time Series* Gene Expression Data (Differential Expressed Genes)

SAM: Significance Analysis of Microarrays, Detect differentially expressed gene in time series data. (Tusher et al., 2001, *PNAS*) 10/57

Welcome to SAM Version 1.21		×	
Significance Analysis of Microarra	ys 🛛		
(C) Trustees of Leland Stanford Junior (All Rights Reserved	University		
Choose Response Type Choose Response Type Choose Response Type Cass Response Type Cass Response Censored Survival data Multiclass Response One class Response Paired data		<	
Data in Log Scale? C Logged (base 2) C Uni	Academic version ogged		SAM plot
Web Link Option C Clone ID Name 	C Accession No. C Un Contraction	t remains t remains tools that gives the subjector form ⇒ 20 + 10 + 10 + 10 + 10 + 10 + 10 + 10 +	
Number of Permutations	Additional Sheets	of false positives: 10 SAM Plotsh Rate (%): 16	 • ×
 K-Nearest Neighbors Imputation Engine C Row Average Imputer 	ter Number of Neighbors	-10	
Random Number Seed 1234567	Generate Random S		
ок	Cancel		2 4 6 8
http://www-stat.stanford.ec	lu/~tibs/SAM/	10	
		Expected \$	icore

Software for *Time Series* Gene Expression Data (Differential Expressed Genes)

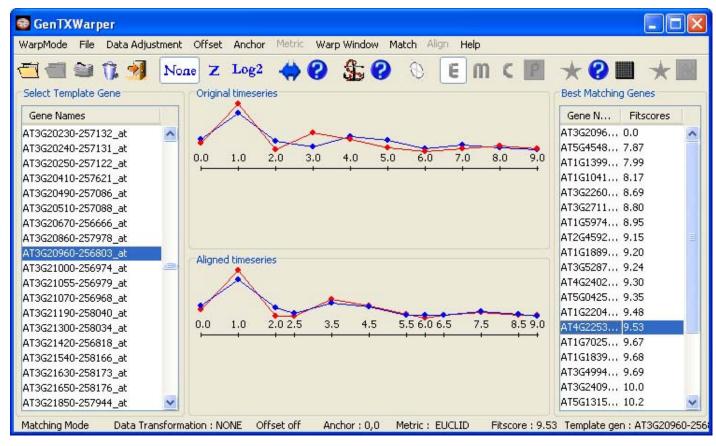

http://www.biostat.washington.edu/software/jstorey/edge/

Timecourse differential expression method: Storey JD, Xiao W, Leek JT, Tompkins RG, and Davis RW. (2005) Significance analysis of time course microarray experiments. Proceedings of the National Academy of Sciences, 102: 12837-12842.

Software for *Time Series* Gene Expression

Data (Differential Expressed Genes and Networks)

R package, **GeneTS**: Microarray Time Series and Network Analysis. Detect periodically expressed gene. (Wichert et al., 2004, *Bioinformatics*)


http://www.strimmerlab.org/software/genets/

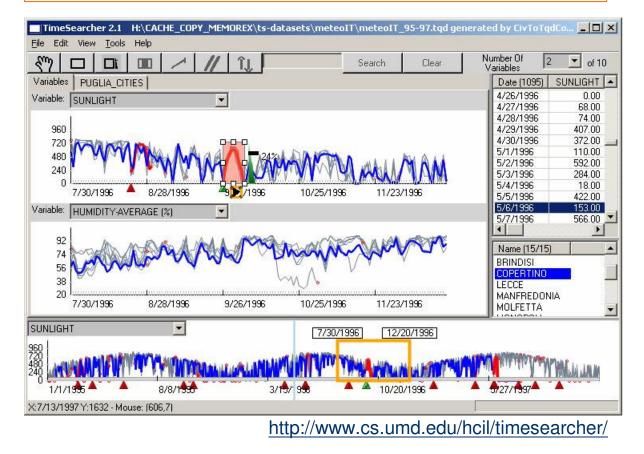
Software for *Time Series* Gene Expression

Data (Visualization)

GenT χ **Warper**:

Mining of gene expression time series with dynamic time warping techniques (Criel and Tsiporkova, 2005, *Bioinformatics*)

http://www.psb.ugent.be/cbd/papers/gentxwarper/


13/57

Software for *Time Series* Gene Expression

Data (Visualization)

TimeSearcher: Visual Exploration of Time-Series Data (Hochheiser et al, 2003)

14/57

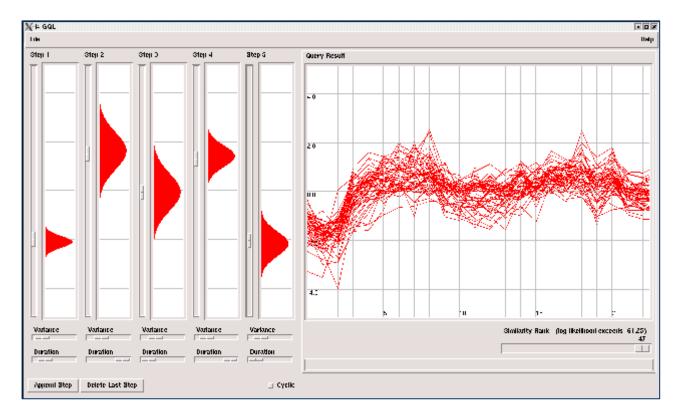
ORIOGEN:

Order Restricted Inference for Ordered Gene ExpressioN clustering for time series. (Peddada et al., 2005, *Bioinformatics*) <u>http://dir.niehs.nih.gov/dirbb/oriogen1/index.cfm</u>

Software for *Time Series* Gene Expression Data (Visualization and Clustering)

CAGED:

Cluster analysis of gene expression dynamics based on autoregressive equations (Ramoni et al., 2002, *PNAS*)


http://genomethods.org/caged/

15/57

Software for *Time Series* Gene Expression Data (Visualization and Clustering)

GQL:

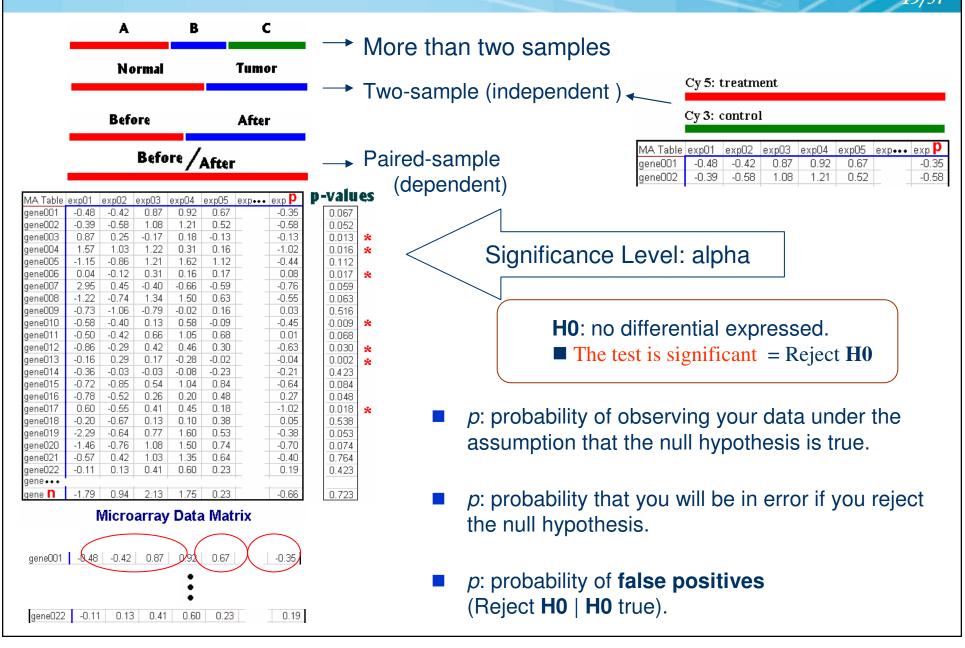
The Graphical Query Language: A GHMM-based tool for querying and clustering Gene-Expression time-course data (Costa et al., 2005, *Bioinformatics*)

http://www.ghmm.org/gql

16/57

Software for *Short Time Series* Gene Expression Data (clustering and visualization)

STEM:


Short Time-series Expression Miner (Ernst and Bar-Joseph. 2006, *BMC Bioinformatics*.)

🚔 STEM: Short Time-series Expression Miner		_ 🗆 ×	1			
1. Expression Data Info:						
Data File: g27_1.bt	📾 Browse	. 🛛				
View Data File						
🔿 Log normalize data 💿 Normalize data 🔿 No normalization/add 0 🗾 🕎						
✓ Spot IDs included in the data file		All Profiles (2) Clusters ordered	based on number of genes and profiles ordered b			
. Gene Annotation Info:	1	43 39				
Gene Annotation Source: Human (EBI)		14 0				
Cross Reference Source: Human (EBI)						
Gene Annotation File: gene_association.goa_human.gz	Brows		JĽIĽIWL			
Cross Reference File: human.xrefs.gz	📾 Brows	44				
Download the latest: 🗌 Annotations 📄 Cross References 📄 Ontology 🛛 🕅						
. Options:						
Clustering Method: STEM Clustering Method 💌	8					
Maximum Number of Model Profiles: 50 🔶 🔯						
Maximum Unit Change in Model Profiles between Time Points: 2 🔶 🔣		Filtered Gene Lis	ist Main Gene Table Order Profiles By			
Advanced Options						
Execute:						
Execute						
© 2004, Carnegie Mellon University. All Rights Reserved. 🔗						
http://www.cs.cmu.edu/~	ernst/st	em/	-			
mp.//www.cs.cmu.edu/	51131/31					

Some Issues

- The p-values
- Multiple Testing Corrections
- Permutation Test
- **Correlation Coefficient**
- Gene Set Enrichment Analysis

Finding Differentially Expressed Genes

The *p*-values for detecting DE genes

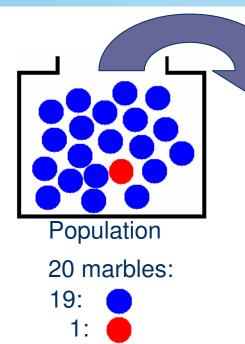
The p-value is the probability that a gene's expression level are different between the two groups **due to chance**.

False Positive = (Reject H0 | H0 true)

= concluding that a gene is differentially expressed when in fact it is not.

Decision Rule

Reject H_0 if *P* is less than alpha.


- P < 0.05 commonly used. (Reject **H**₀, the test is significant)
- The lower the p-value, the more significant the difference between the groups.

Type I Error (alpha): calling genes as differentially expressed when they are NOT Type II Error: NOT calling genes as differentially expressed when they ARE

Hypothesis Testing		Truth	
		Ho	Hı
Decision	Reject Ho	Type I Error (alpha) (false positive)	Right Decision (true positive)
	Don't Reject Ho	Right Decision	Type II Error (beta)

Power = $1 - \beta$.

Multiple Hypothesis Correction

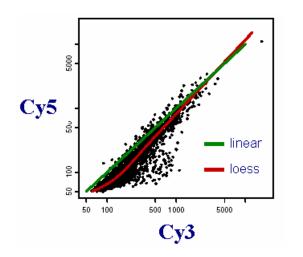
- What are the odds of randomly sampling the red marble
 by chance? It is 1 out of 20.
- Sample a single marble (and put it back) 20 times. Have a much higher chance to sample the red marble.

This is exactly what happens when testing several thousand genes at the same time.

Imagine that the red marble is a false positive gene: the chance that false positives are going to be sampled is higher the more genes you apply a statistical test on.

Multiplicity of Testing

X: false positive gene


$$P(X \ge 1)$$

$$= 1 - P(X = 0)$$

 $= 1 - 0.95^n$

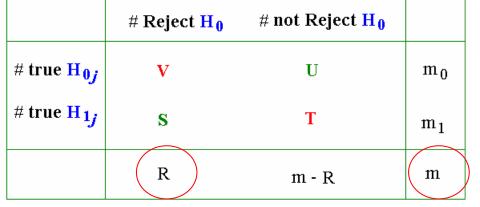
Number of genes tested (N)	False positives incidence	Probability of calling 1 or more false positives by chance (100(1-0.95 ^N))
1	1/20	5%
2	1/10	10%
20	1	64%
100	5	99.4%

Multiplicity of Testing (for detecting DE genes)

- Label reference sample with Cy3 and Cy5:
 - No genes are DE.
 - Differences are experimental error.
- p-value=0.01: each gene would have a 1% chance of having a p-value of less than 0.01, and thus be significant at the 1% level.

Example: 10000 genes

- Expect to find 100 significant genes at the 1% level.
- Expect to find 10 genes with a p-value less than 0.001.
- Expect to find 1 gene with p-value less than 0.0001


Question:

Truly differentially expressed?, or a false positive results (because we are analyzing a large number of genes?)?

Types of Error Control

Multiple testing correction adjusts the p-value for each gene to keep the overall error rate (or false positive rate) to less than or equal to the user-specified p-value cutoff or error rate individual.

Multiple Testing

Type One Errors Rates PCER = $\frac{E[\mathbf{V}]}{m}$ PFER = $E[\mathbf{V}]$ FWER = $p(V \ge 1)$ FDR = $E\left(\frac{V}{R} | R > 0\right) Pr(R > 0)$ V : false positives = Type I errors T : false negatives = Type II errors

PCER: Per-comparison error rate PFER: Per-family error rate PWER: Family-wise error rate FDR: False discovery rate

> Power = Reject the false null hypothesis Any-pair Power = $p(S \ge 1)$ Per-pair Power = $\frac{E[S]}{m_1}$ All-pair Power = $p(S=m_1)$

Multiple Testing Corrections

Test Type	Type of Error control	Genes identified by chance after correction	most stringsst
Bonferroni Bonferroni Step- down Westfall and Young permutation	Family-wise error rate	If error rate equals 0.05, expects 0.05 genes to be significant by chance	most stringent More false negatives
Benjamini and Hochberg	False Discovery Rate	If error rate equals 0.05, 5% of genes considered statistically significant (that pass the restriction after correction) will be identified by chance (false positives).	More false positives least stringent

24/57

Bonferroni Correction

- The p-value of each gene is multiplied by the number of genes in the gene list.
- If the corrected p-value is still below the error rate, the gene will be significant:
 - Corrected p-value = p-value * n < 0.05.</p>
 - If testing 1000 genes at a time, the highest accepted individual uncorrected p-value is 0.00005, making the correction very stringent.
- With a Family-wise error rate of 0.05 (i.e., the probability of at least one error in the family), the expected number of false positives will be 0.05.

Bonferroni, Carlo Emilio (1892-1960)

- Italian mathematician
- Bonferroni correction (1935-36)
- Bonferroni's Inequality

$$P(\bigcup_{i=1}^{n} E_i) \le \sum_{i=1}^{n} P(E_i)$$

Benjamini and Hochberg FDR

- This correction is the least stringent of all 4 options, and therefore tolerates more false positives.
- There will be also less false negative genes.
- The error rate is a proportion of the number of called genes.
- FDR: Overall proportion of false positives relative to the total number of genes declared significant.

Corrected P-value= p-value * $(n / R_i) < 0.05$

Gene name	p-value (from largest to smallest)	Rank	Correction	Is gene significant after correction?
A	0.1	1000	No correction	0.1 > 0.05 → No
В	0.06	999	1000/999*0.06 = 0.06006	0.06006 > 0.05 → No
С	0.04	998	1000/998*0.04 = 0.04008	0.04008 < 0.05 → Yes

Let n=1000, error rate=0.05

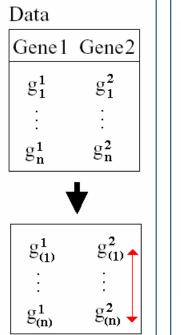
The Permutation Test

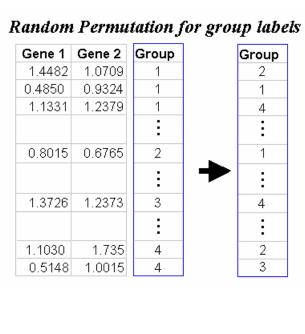
The permutation test is a test where the null hypothesis allows to reduce the inference to a randomization problem.

Randomization test

- Works of R.A. Fisher and E.J.G. Pitman in the 1930s.
- Possible to ascribe a probability distribution to the difference in the outcome possible under null hypothesis.
- The outcome data are analyzed many times
 - once for each acceptable assignment that could have been possible under H0
 - and then compared with the observed result,
 - without dependence on additional distributional or model-based assumptions.

Ref: Mansmann, U. (2002), Practical microarray analysis: resampling and the Bootstraap. Heidelberg.

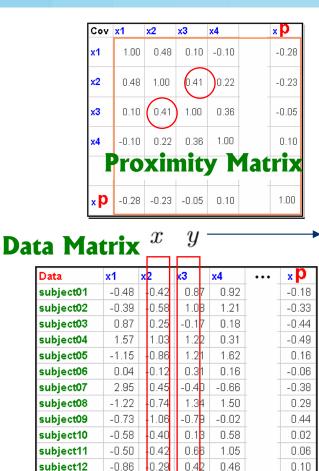

The Permutation Test (conti.)


Coexpression of genes

H₀: Gene 1 and Gene 2 are not correlated. Test statistic T:

Pearson (or Spearman) correlation coefficient, calculate $t_{\mbox{\scriptsize obs}}$

p-value:
$$p = P(T \ge t_{obs} | H_0) \approx \frac{\#\{T^* \ge t_{obs}\}}{n!}$$



Perform a Permutation Test (general):

- 1. Analyze the problem, choice of null hypothesis
- 2. Choice of test statistic T
- 3. Calculate the value of the test statistic for the observed data: tobs
- 4. Apply the randomization principle and look at all possible permutations, this gives the distribution of the test statistic **T** under H0.
- 5. Calculation of *p-value*:

$$p = P(T \ge t_{obs} \mid H_0) \approx \frac{\#\{t^* \ge t_{obs}\}}{\# \text{ permutations}}$$

Correlation Coefficient and Distance

0.29

0.03

0.85

0.52

0.55

0.64

0.07 -0.04

0.17

-0.03

0.54

0.26

0.41

0.77

0.44

-0.28

-0.08

1.04

0.20

0.45

1.60

0.31

...

-0.55

-0.25

0.24

0.48

-0.66

0.55

-0.21

-0.16

-0.36

-0.72

-0.78

0.60

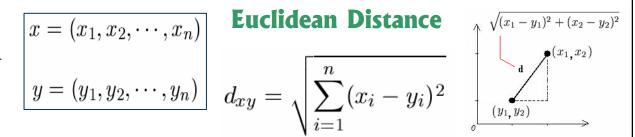
-2.29

subject13

subject14

subject15 subject16

subject17


÷

subject 👖

mean

Pearson Correlation Coefficient

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

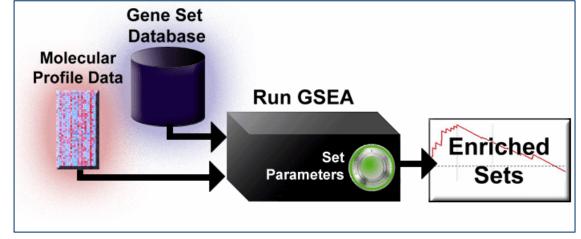
Pearson Correlation coefficient: great success in computational biology, especially in clustering algorithm.

Advantage

it can group together genes with similar expression profiles even if their units of change are different.

Disadvantage

The Correlation Coefficient can take negative values and does not satisfy the triangle inequality and thus not a metric.


Correlation Coefficient and Distance

- Use d = 1 r: (Eisen *et al.* 1998) $d_{rs} = 1 c_{rs}$
 - still not a metric, does not satisfy the triangle inequality.
- Generalized version of the triangle inequality:
 - $g_m(x, z) \le 2(g_m(x, y) + g_m(y, z)) \Rightarrow$ a transitive measure.
 - When using the correlation coefficient two highly dissimilar profiles can't be very similar to a third profile.

- The standard transformation from a similarity matrix Cto a distance matrix D is given by $d_{rs} = (c_{rr} - 2c_{rs} + c_{ss})^{1/2}$.
- Other transformations
 (Chatfield and Collins 1980, Section 10.2)

Gene Set Enrichment Analysis

- Single-gene analysis may miss important effects on metabolic pathways, transcriptional programs and stress response.
- Study same biological system, little overlap statistically significant genes.
- Gene Set Enrichment Analysis (GSEA) is a computational method that determines whether an a priori defined set of genes shows *statistically significant*, concordant differences between two biological states (e.g. phenotypes).

GSEA-p Molecular Signature Database (MSigDB)

Source: http://www.broad.mit.edu/gsea/

Subramanian, Tamayo, et al. (2005), Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. PNAS 102, 15545-15550

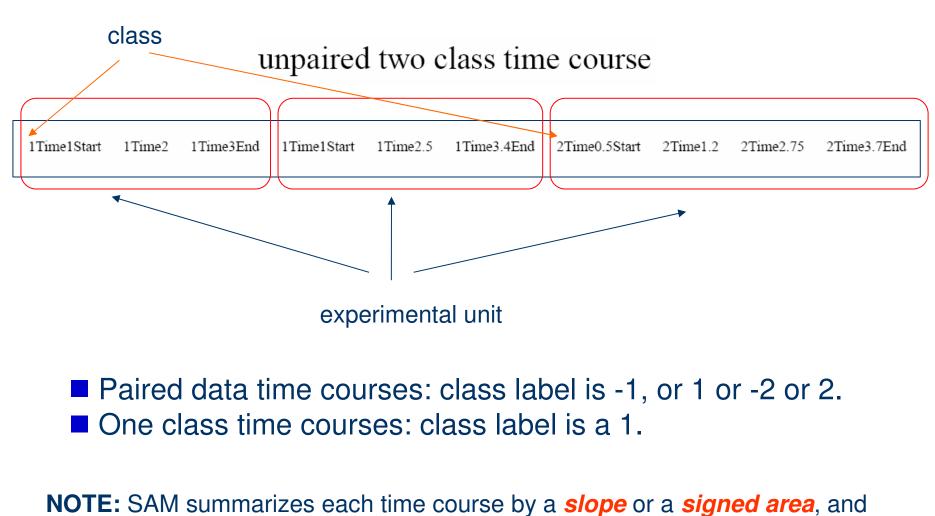
SAM

SAM does not do any normalization!

- SAM assigns a score to each gene in a microarray experiment based upon its change in gene expression relative to the standard deviation of repeated measurements.
- SAM plot: the number of observed genes versus the expected number. This visualizes the outlier genes that are most dramatically regulated.
- False discovery rate: is the percent of genes that are expected to be identified by chance.
- q-value: the lowest false discovery rate at which a gene is described as significantly regulated.

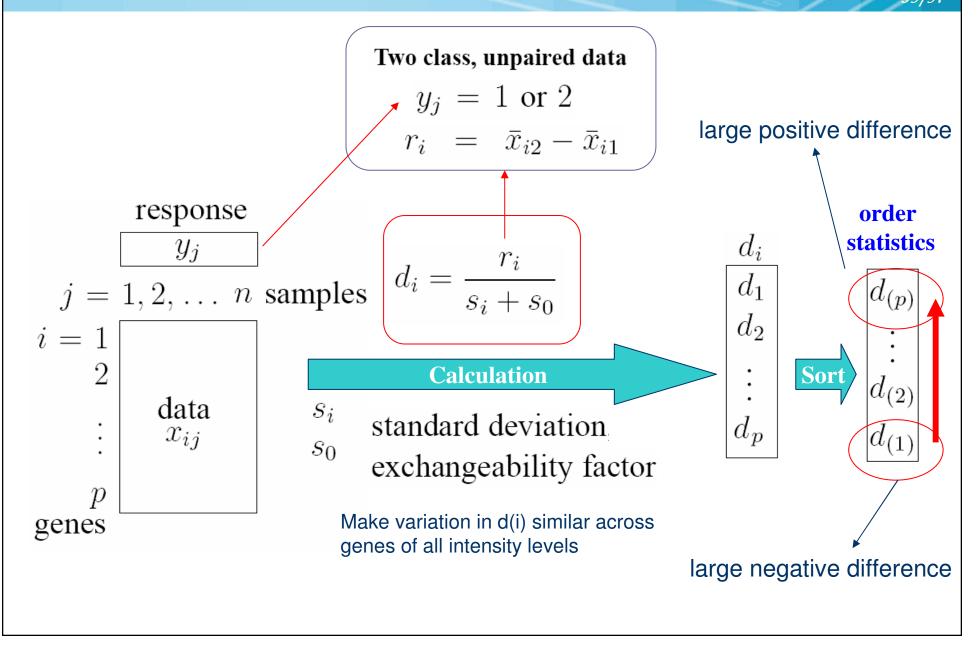
🔏 Microsoft E	xcel - two	class.xls		
■ 檔案(E)	編輯Œ) 檢視(V)指	插入① 格式② 工具① 資料② 視窗② 説明④ ×
			ABC	[3] 3] 3] - 9] - 9] Σ - 1 10] 75% - 0 SAM SAM Plot Control
		c	n	
A	В	1	U	
2 AFFX-Biol	100001	7 64252	-0.501	242 -1.95964 10.1298 -10.77 -4.47036 -7.65613 7.58627
3 AFFX-Biol	100002	38.1083	4.86	
4 AFFX-Biol	100003	21,1568	5.969	
5 AFFX-Bio	100004	187.22		
6 AFFX-Bio	100005	64,135		R12 1 97359 81 4896 -61 0625 -55 0031 -21 55555 -63 589
7 AFFX-Biol	100006	43.2501		Welcome to SAM Version 1.21
8 AFFX-Biol	100007	38,7908	191	
9 AFFX-Cre		676.819	48	Significance Analysis of Microarrays
10 AFFX-Cre		731.028	559	
11 AFFX-Biol		-45.0362	18.9	
12 AFFX-Biol		9.83463		(C) Trustees of Leland Stanford Junior University
13 AFFX-Biol		-6.23839	1.85	
14 AFFX-Bio	100013	-76.144	-13.8	All Rights Reserved
15 AFFX-Bio	100014	-9.927		
16 AFFX-Biol		-13.4207		
17 AFFX-Biol		5.39054	6.5	Quantitative Response
18 AFFX-Cre	100017	-4.37465	-9.78	Two class, unpaired data
19 AFFX-Cre	100018	4.7197	-26.8	Choose Response Type Censored Survival data Multiclass Response
20 hum alu	100019	221.097	886	One class Response
21 AFFX-Dap		-20.7535	-12.1	Paired data
22 AFFX-Dap	100021	18.6053	-13	
23 AFFX-Dap	100022	12.0019	8.4	Academic version Data in Log Scale? C Logged (base 2) C Unlogged
24 AFFX-Lys	100023	-8.29982	-0.29	Data in Log State: (Logged (base 2) (Onlogged
25 AFFX-Lys		-20.6604	-15.9	
26 AFFX-Lys	100025	5.48261	-14	Web Link Option C Clone ID 💿 Name C Accession No. C UniGene Cluster ID
27 AFFX-Phe	100026	-3.1287	-3.24	
28 AFFX-Phe	100027	-19.0192	-35.1	100 Sheet2
29 AFFX-Phe	100028	14.2111	-20.8	Number of Permutations 200 Additional Sheets Sheet3
30 AFFX-Thr		-24.7369		
31 AFFX-Thr	100030	4.9279		
32 AFFX-Thr	100031	11.3658	-26.1	K-Nearest Neighbors Imputer
33 AFFX-Trpr	100032	16.9344	10.4	Imputation Engine Number of Neighbors 10
34 AFFX-Trpr		24.6975	-39	C Row Average Imputer
35 AFFX-Trpr		-5.37853		
4 4 P H \S	heetl/S	Sheet2/S	heet?	Random Number Seed 1234567 Generate Random Seed
就緒				
			_	
				OK

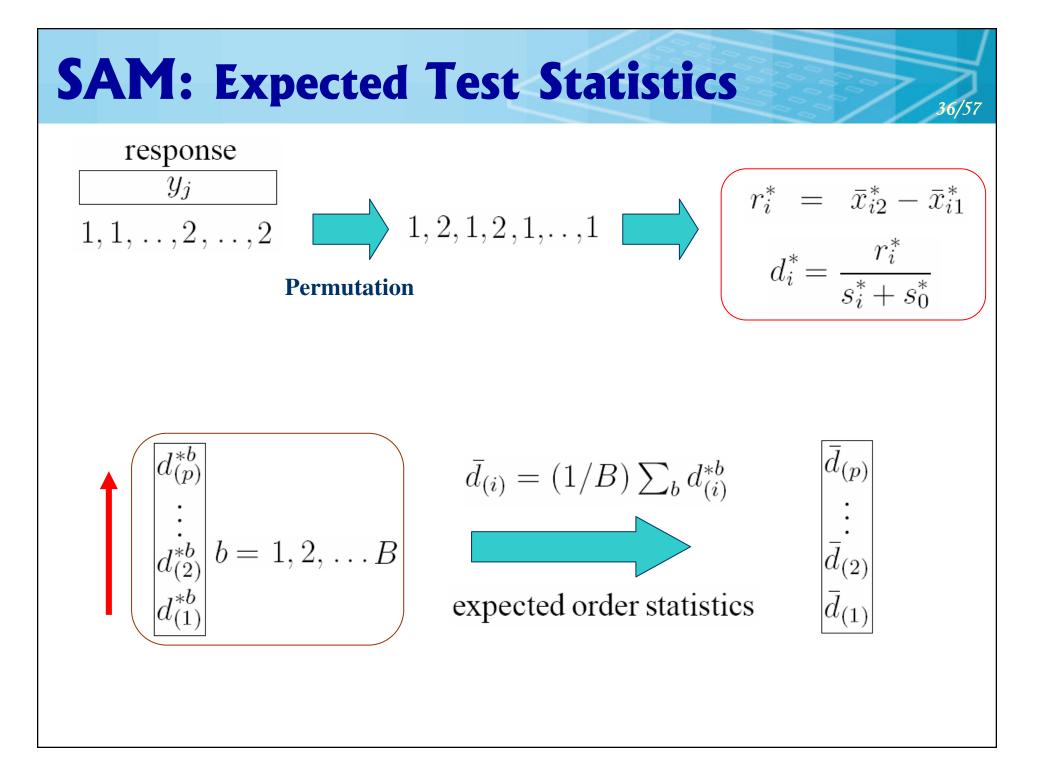
SAM: Significance Analysis of Microarrays http://www-stat.stanford.edu/~tibs/SAM/ Tusher VG, Tibshirani R, Chu G.(2001). Significance analysis of microarrays applied to the ionizing radiation response. *Proc Natl Acad Sci* 98(9):5116-21.

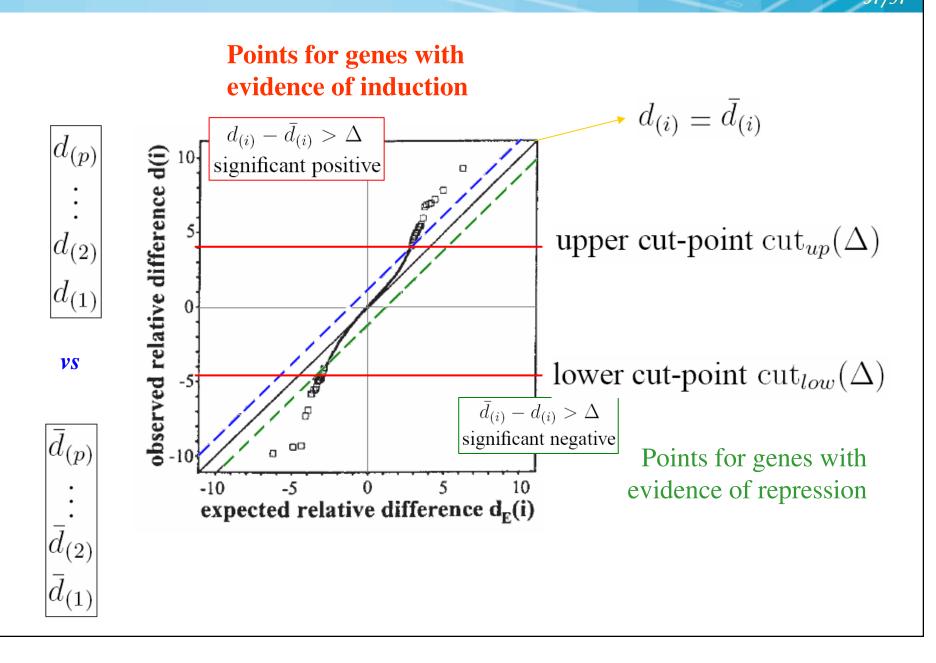

SAM: Response Type

Response type	Coding
Quantitative	Real number eg 27.4 or -45.34
Two class (unpaired)	Integer 1, 2
Multiclass	Integer 1, 2, 3,
Paired	Integer -1, 1, -2, 2, etc.
	eg - means Before treatment, + means after treatment
	-1 is paired with 1, -2 is paired with 2, etc.
Survival data	(Time, status) pair like (50,1) or (120,0)
	First number is survival time, second is
	status (1=died, 0=censored)
One class	Integer, every entry equal to 1
Time course, two class (unpaired)	(1 or 2)Time(t)[Start or End]
Time course, two class (paired)	(-1 or 1 or -2 or 2 etc)Time(t)[Start or End]
Time course, one class	1Time(t)[Start or End]
Pattern discovery	eigengenek, where k is one of 1,2, number of arrays

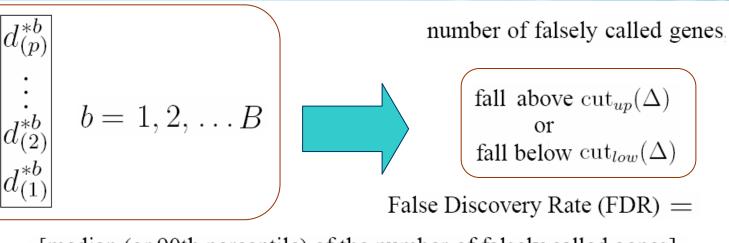
SAM Users guide and technical document


33/57


SAM: Time Series


then treats the summarized data in the same way as it treats two class, one class, or a two-class paired design.

SAM: Significance Analysis of Microarrays



SAM Plot

Estimating FDR for a Selected Δ

[median (or 90th percentile) of the number of falsely called genes]

The q-value of a gene is the false discovery rate for the gene list that includes that gene and all genes that are more significant. It is computed by finding the smallest value of $\hat{\Delta}$ for which the gene is called significant, and then is the FDR corresponding to $\hat{\Delta}$.

John D. Storey (2002) A direct approach to false discovery rates, Journal of the Royal Statistical Society: Series B (Statistical Methodology) 64 (3), 479–498.

The q-value gives the scientist a hypothesis testing error measure for each observed statistic with respect to pFDR.

The p-value accomplishes the same goal with respect to the type l error, and the adjusted p-value with respect to FWER.

Interpretation of Results for Time Series Data by SAM

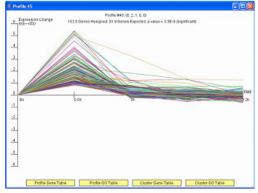
SAM Summarize each time course by a **slope** (least squares slope of expression vs time), or a **signed area**.

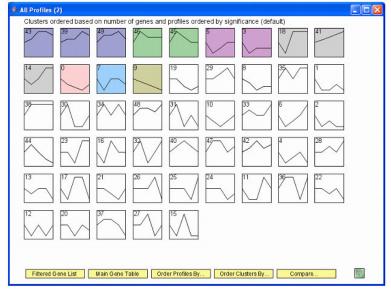
For two class unpaired data:

Slope: summarizes each time series by a slope.

- Compare slopes across the two groups.
- Useful for finding genes with a consistent increase or decrease over time.

Signed area: the time course profile is shifted so that it is zero at the first time point.


- Counting positive area above the line and negative below the line.
- Compares the areas across the groups.
- Useful for finding genes that rise and then level off or come back down to their baseline.


 $= \bar{x}_{i2} - \bar{x}_{i1}$ $\overline{s_i + s_0}$ = mx + bExpression (x_2, y_2) (x_1, y_1) $\Delta x = x_2 - x_1$ Slope = $m = \frac{\Delta y}{\Delta x}$ х Time *Least-squares slope* $m = \frac{n \sum (x_i y_i) - \sum x_i \sum y_i}{\sum y_i}$ $D = n \sum (x_i^2) - (\sum x_i)^2$ () 0 t0 t2t3 t4 t5

STEM

Purpose: Identifying Significant Expression Patterns (Clustering Short Time Series Gene Expression Data)

- Unique challenges
 - Thousands of genes are being profiled simultaneously while the number of time points is few.
 - Many genes will have the same expression pattern just by random chance.
 - Generally require the estimation of many parameters and are less appropriate for short time series data.
 - Do not differentiate between real and random patterns.

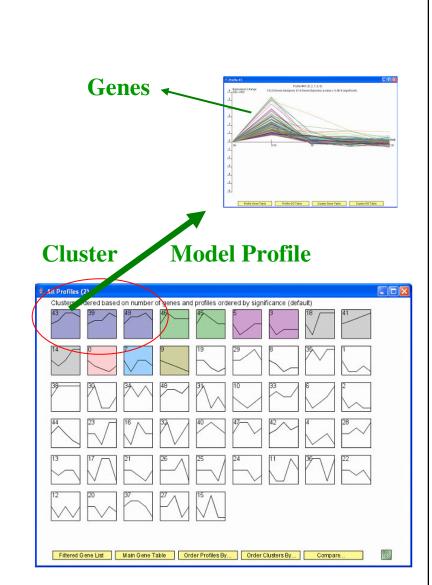
http://www.cs.cmu.edu/~jernst/stem/

STEM: 4 Steps

1. Selecting Model Profiles

select a set of distinct and representative temporal expression profiles (Model Profiles), selected independent of the data.

2. Assigning Genes to Model Profiles

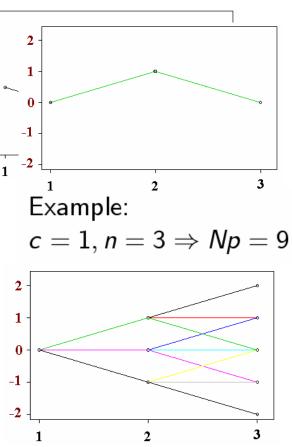

Assign each gene passing the filtering criteria to the model profile that most closely matches the gene's expression profile as determined by the correlation coefficient.

3. Identifying Significant Model Profiles

Algorithm can determine which profiles have a statistically significant higher number of genes assigned using a permutation test.

4. Grouping Significant Profiles

Significant model profiles can be grouped based on similarity to form clusters of significant profiles.



1. Selecting Model Profiles (pre-defined)

Expression values (*log ratios*), where the ratios are with respect to the expression of the first time point (always be 0).

A parameter *c*: controls the amount of change a cone can exhibit between successive time points.
Select a Set of model expression

- Which same, or go down one or two units.
- *n* time points, \rightarrow (2*c* +1)^{*n*-1} distinct profiles.
 - 5 time points and c =1, would result in 81 model profiles.
 - 6 time points and c =2, would result in 3125 model profiles.
- Select *m* representative profiles (a subset of profiles)
 - Greedy approximation algorithm (see Ernst et al., 2005, *Bioinformatics*).

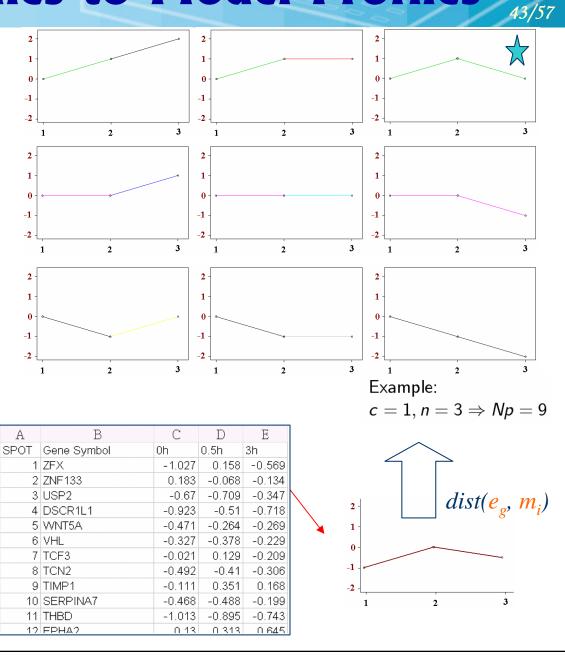
2. Assigning Genes to Model Profiles

3

5

б

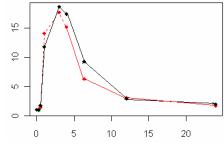
9


10

11

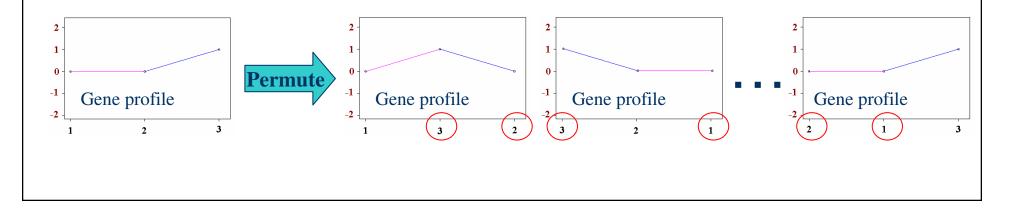
12

13


- Given a set *m* of model profiles and a set of genes *G*, each gene *g* in *G* is assigned to a model expression profiles *m_i* in *m* such that *dist(e_g, m_i)* is the minimum over all^{*g*}*m_i* in *m*.
 - e_g is the temporal expression profile for gene g.
 - Ties: assign g to all of these profiles (h), weights 1/h.
- T(m_i): The number of genes assigned to each model profile.

3. Identifying Significant Model Profiles

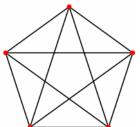
Identify model profiles that are significantly enriched for genes.


- Null hypothesis: the data are *memoryless*.
 - i.e., the probability of observing a value at any time point is independent of past and future values.
 - Under null hypothesis: any profile we observe is a results of random fluctuation in the measured values for genes assigned to that profile.

- Model profiles that represent true biological function deviate significantly from null hypothesis since many more gene than expected by random change are assign to them.
- Permutation Test: permutation is used to quantify the expected number of gene that would have been assigned to each profile if the data were generated at random.

3. Identifying Significant Model Profiles (conti.)

- Under the null hypothesis, the order of the observed values is random.
 - as each point is independent of any other point.
 - permutations are expected to result in profiles that are similar to the null distribution.
- Since there are *n* time points, each gene has *n*! possible permutations (can be computed for small *n*).
- For each possible permutation, assign genes to their closet model profile.
 - Let s_{ij} be the number of genes assigned to model profile *i* in permutation *j*.
 - Set $Si = \sum_{j} s_{ij}$, then $E_i = Si/n!$ is the expected number of genes for each profile model if the data were indeed generated according to the null hypothesis.


Assume: The number of genes in each profile is distributed as a Binomial with parameters |G| and E_i/|G|.
 Thus the p-value of seening T(m_i) genes assigned to profile m_i is P(X>= T(m_i)), where X~Binomial(|G|, E_i/|G|).

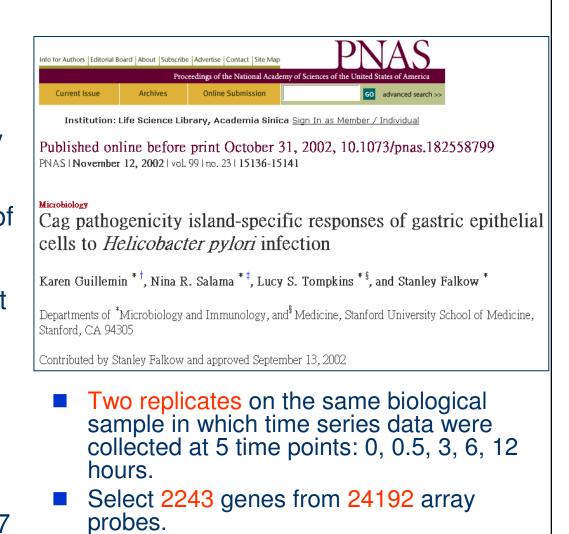
Bonferroni Correction: consider the number of genes assigned to m_i to statistically be significant if $P(X \ge T(m_i)) < \alpha / m$.

4. Grouping Significant Profiles

Graph theoretic problem

- **Graph** (*V*, *E*):
 - V: the set of significant model profiles.
 - **E** : the set of edges.
- Two profiles v_1, v_2 in V are connected with an edge iff $dist(v_1, v_2) < \delta$.
- Cliques in this graph correspond to sets of significant profiles which are all similar to one another.

a clique of _ size 5


To identify large cliques of profiles which are all very similar to each other.

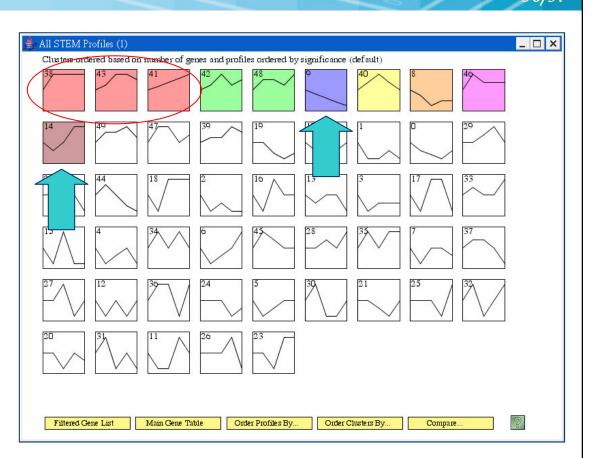
Greedy algorithm: to partition the graph into cliques and thus to group significant profiles.

- Cluster for a significant profile $C_i = \{p_i\},\$
- Initial $C_i = \{p_i\}$, look for a profile p_j such that p_j is the closet profile to p_i that is not already included in C_i .
 - If $dist(p_j, p_k) \le \delta$ for all profiles p_k in C_i , add p_j to C_i and repeat process,
 - otherwise stop and declare C_i as the cluster for p_i .
- After obtaining clusters for all significant profiles, select the cluster with *largest number of genes* (by counting the number of genes in each of the profiles that are included in this cluster), remove all profiles in that cluster and repeat the above process.
- The algorithm terminates when all profiles have been assigned to clusters.

Example by STEM

- Data: immune response data from Guillemin et al. (2000, *PNAS*)
- Use hmuan cDNA microarray to study the gene expression profile of gastric AGS cells infected with various strains of Helicobacter pylori.
 - H.pylori is one of the most abundant human pathogenic bacteria.
 - Cy3 (for the reference), Cy5 (for the experimental sample)
- Analyze data from the response of the wild-type G27 strain.

Set m=50 model profiles and c=2.


STEM Interface

	🚔 STEM: Short Time-series Expression Miner			- 🗆 ×			
$\left(\right)$	1. Expression Data Info:						
\mathbf{i}	Data File: g27_1.txt		📾 Browse	1			
	View Data File	ant Data	<u>/</u>		AB	C D E F G	
	View Data File	eat Data			1 SPOT Gene Symbol	0h 0.5h 3h 6h 12h	
	🔾 Log normalize data 💿 Normalize data 🔿 No norm	nalization/add 0 🛛 🔯			2 1 ZFX 3 2 ZNF133	-0.027 0.158 0.169 0.193 -0.165 0.183 -0.068 -0.134 -0.252 0.177	
					4 3 USP2	-0.67 -0.709 -0.347 -0.779 -0.403	
	Spot IDs included in the data file				5 4 DSCR1L1 6 5 WNT5A	-0.923 -0.51 -0.718 -0.512 -0.668 -0.471 -0.264 -0.269 -0.154 -0.254	
$\left(\right)$	2. Gene Annotation Info:			_	7 6 VHL	-0.327 -0.378 -0.229 -0.264 -0.072	
\setminus	Gepe Annotation Source: Human (EBI)	_	2		8 7 TCF3 9 8 TCN2	-0.021 0.129 -0.209 -0.245 0.036 -0.492 -0.41 -0.306 -0.494 -0.273	
					10 9 TIMP1	-0.492 -0.41 -0.308 -0.494 -0.273	
	Cross Reference Source: Human (EBI)	▼	2		11 10 SERPINA7	-0.468 -0.488 -0.199 -0.144 -0.185	
	Gene Annotation File: gene_association.goa_human.gz		📹 Browse	2	12 11 THBD 13 12 FPHA2	-1.013 -0.895 -0.743 -0.601 -0.543 0 13 0 313 0 645 -0 155 0 28	
	Cross Reference File: human.xrefs.gz		📾 Browse	8			
	Download the latest: Annotations Cross Reference	ces 🗌 Ontology 📑	1				
				_			
	3. Options:						
	Clustering Method: STEM Clustering Method						
	Maximum Number of Model Pi	rofiles: 50 🐥 🚺					
Maximum Unit Change in Model Profiles between Time Points: 2 🖕 🔟							
	E Advanced Options						
\langle	4. Execute:						
\setminus		🍰 Advanced Options				×	
	Execute	Filtering Model Pro	files Clustering Pro	ofiles Gei	ne Annotations GO Analysis		
	© 2004, Carnegie Mellon University. All Rights		Maxin	num Numbo	er of Missing Values: 0 🐥 🔯		
			Minimur	m Correlatio	on between Repeats: 0 🐥 🔯	7	
						4	
			Minimu	m Absolute	Expression Change: 0.8 +		
			Change should be has	ed on: 🗅	Maximum–Minimum 💿 Difference fro	om 0 🛛 🕅	
				0			
		Pre-filtered Gene File:				🕾 Browse 関	
	_						

49/57

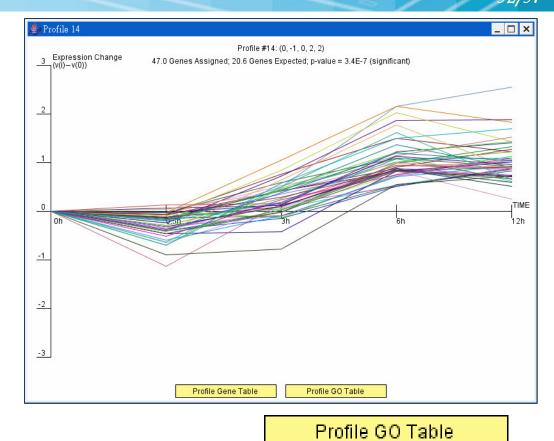
Example: Clustering Results

- Colored profiles are significant.
- Profiles with the same shade belong to the same cluster.
- Corr=0.7 $\rightarrow \delta$ =0.3 in grouping method.
- one: 3 profiles, one: 2 profiles, five: single profiles.

Four of the 10 significant model profiles were significantly enriched for **GO categories.**

Example: GO Interpretation

- Profile 9 (0, -1, -2, -3, -4): 131 down-regulated genes during the entire experiment duration.
- This profile was significantly enriched for cell-cycle genes (p-value < 10⁻¹⁰).


		51/57							
📥 Profile 9									
Profile #9: (0, -1, -2, -3, -4)									
3 Expression Change (v(i)-v(0)) 130.0 Genes Assigned; 34.7 Genes Expected; p-value = 3.5E-36 (significant)									
2									
1									
2011									
		Decision of							
0		TIME							
0h		6h 12h							
<u>-1</u>									
	_ 🗆 ×								
p-value	Corrected								
	p-value								
3.5E-11	<0.001								
6.2E-10	<0.001								
2.1E-9	<0.001								
2.9E-9	< 0.001 =	Profile Gene Table Profile GO Table							
5.6E-9	< 0.001								
5.8E-9	< 0.001								
2.5E-8	< 0.001	Profile GO Table							
3.9E-8	< 0.001	Frome GO Table							
2.8E-7	< 0.001								
3.0E-7	< 0.001								
5.3E-7 8.2E-7	<0.001								
8.2E-7 1.4E-6	<0.001								
1.4E-0 1.4E-6	<0.001								
2.1E-6	<0.001	I Iviany of the cycling denes							
2.1E-0 2.7E-6	<0.001	Many of the cycling genes in this profile are known							
2.7 E-0	<0.001	In this profile are known							

Many of the cycling genes in this profile are known transcription factors, which could contribute to repression of cell-cycle genes, and ultimately, the cell cycle.

Category ID	Category Name	#Genes Category	#Genes Assigned	#Genes Expected	#Genes Enriched	p-value	Corrected p-value	
GO:0007049 (cell cycle	432	19.0	2.7	+16.3	3.5E-11	< 0.001	1
GO:0006259	DNA metabolism	344	16.0	2.2	+13.8	6.2E-10	< 0.001	
GO:0006260	DNA replication	110	10.0	0.7	+9.3	2.1E-9	<0.001	
GO:0006139	nucleobase, nucleoside, nucleotide and nuc	1490	31.0	9.5	+21.5	2.9E-9	<0.001	
GO:0000074	regulation of progression through cell cycle	293	14.0	1.9	+12.1	5.6E-9	<0.001	
GO:0051726	regulation of cell cycle	294	14.0	1.9	+12.1	5.8E-9	<0.001	
GO:0006261	DNA-dependent DNA replication	49	7.0	0.3	+6.7	2.5E-8	<0.001	T
GO:0005634	nucleus	1667	31.0	10.6	+20.4	3.9E-8	<0.001	1
GO:0044238	primary metabolism	3112	43.0	19.8	+23.2	2.8E-7	<0.001	1
GO:0006281	DNA repair	141	9.0	0.9	+8.1	3.0E-7	<0.001	
GO:0043283	biopolymer metabolism	1295	25.0	8.2	+16.8	5.3E-7	<0.001	1
GO:0006974	response to DNA damage stimulus	159	9.0	1.0	+8.0	8.2E-7	<0.001	
GO:0044237	cellular metabolism	3175	42.0	20.2	+21.8	1.4E-6	<0.001	1
GO:0009719	response to endogenous stimulus	170	9.0	1.1	+7.9	1.4E-6	< 0.001	1
GO:0050875	cellular physiological process	4335	51.0	27.6	+23.4	2.1E-6	<0.001	
GO:0008152	metabolism	3379	43.0	21.5	+21.5	2.7E-6	<0.001	
GO:0043231	intracellular membrane-bound organelle	2476	35.0	15.7	+19.3	3.3E-6	<0.001	
GO:0043227	membrane-bound organelle	2477	35.0	15.7	+19.3	3.3E-6	<0.001	
GO:0044424	intracellular part	3287	42.0	20.9	+21.1	3.4E-6	<0.001	1
GO:0005622	intracellular	3450	43.0	21.9	+21.1	4.7E-6	< 0.001	
GO:0043229	intracellular organelle	2840	37.0	18.1	+18.9	1.1E-5	0.002	
GO:0048015	phosphoinositide-mediated signaling	48	5.0	0.3	+4.7	1.3E-5	0.002	1
GO:0044464	cell part	4598	50.0	29.2	+20.8	2.8E-5	0.010	
GO:0051301	cell division	97	6.0	0.6	+5.4	3.6E-5	0.012	
GO:0016779	nucleotidyltransferase activity	61	5.0	0.4	+4.6	4.3E-5	0.012	-

Example: GO Interpretation

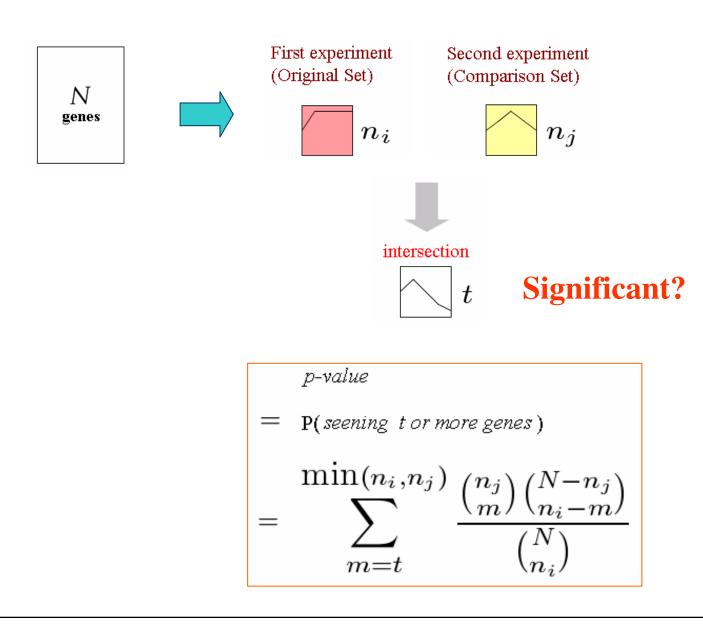
- Profile 14 (0, -1, 0, 2, 2) contained 49 genes.
- GO analysis indicates that many of these genes were relevant to cell structure and annotated as belonging to the categories
 - cytoskeleton (p=9x 10^{-5}),
 - extracellular matrix (9x 10⁻⁴),
 - membrance (2x 10⁻⁶).

Structural elongation of cells is a known phenotypical response to pathogens, and thus the enrichment of such genes in up-regulated expression profiles is consistent with this biological response.

STEM: Other Functionalities

Bidirectional Integration

- Determine for a given model profile what GO terms are significantly enriched.
- Determine for a given GO category what model profiles were most enriched for genes in that category.


Comparing Data Sets

- For a set of genes which had temporal response X in experiment A, which significant responses did they have in experiment B?
- use hypergeometric distribution to compute the significance of overlap between gene sets of model profiles of two experiments.

Example

- Compare the temporal response of gene infected with a wildtype pathogen to those infected woth a knockout mutant version of the pathogen (Guillemin, PNAS, 2002).
- The response of genes when exposed to a certain chemical substance to their response when not exposed. (Jorgensen et al., *Cell Cycle*, 2004)

STEM: Comparing Data Sets

STEM: Comparing Data Sets (conti.)

🚔 Comparison - Significant Intersections

55/57

_ 🗆 🗙

Review

- **Time Series Microarray Experiments**
- Overview of Analyzing Software
- Some Issues
 - P-values
 - Multiple Hypothesis Testing
 - Permutation Test
 - Gene Set Enrichment Analysis
- **SAM: Significance Analysis of Microarrays**
 - Algorithm
 - Interpretation

Differential Expressed Genes

- STEM: Short Time-Series Expression Miner
 - Algorithm
 - **Example**

Clustering

Questions?

Reference: http://idv.sinica.edu.tw/hmwu/SMDA/TimeCourse/index.htm

