Gene Filtering, Missing Values Imputation

國立臺灣大學 資訊所 Course: 生物資訊之統計與計算方法 2006/04/11

> 异漢銘 hmwu@stat.sinica.edu.tw http://www.sinica.edu.tw/~hmwu/

> > Institute of Statistical Science, Academia Sinica 中央研究院 統計科學研究所

Software for Quality Control

GenePix Pro

Analysis Reports and Quality Control Measure

- □ Array Quality Control
- □ Controls Quality Control
- Feature Quality Control
- □ Replicates Quality Control
- □ Signal-To-Noise

(un	titled)							
Scan	Scanned by: GenePix 400 [81990]		OB Analyzed by:		GenePix Pro 6.0.0.54			
Scanned on: 2003		2003/9/29 下午 09:51:37		GPS file:				
Imag	e wavelengths:	635, 532		GAL file:		0701.ga	al	
PMT:		850,750 V		Temperature:		27.6 V		
Lase	r Power:	3.2, 3.9 V		Laser On-tim	e:	661,45	3	
Scan	n Power:	100, 100 %		Barcode:		none		
Norm	nalization Factors:	1,1		Normalization Method:		None		
Wave	elength Image Files:	7-01.tif						
Com	ment:	none						
Vital Statistics								
			635	532	Thresh	old Results		
							635	532
Media	Median signal-to-background			0.9	> 10		Fail	Fail
Mean	Mean of median background		283.21	1065.585	< 500		Pass	Fail
Media	Median signal-to-noise		0	0	> 10		Fail	Fail
Media	Median % > B+1SD		8	8	> 90		Fail	Fail
Featu	Feature variation		0.915	0.622	< 0.5		Fail	Fail
Back	Background variation		1.181	0.855	< 0.5		Fail	Fail
Featu	Features with saturated pixels			0.12 %	< 0.1 %		Pass	Fail
Not F	Not Found features		5855/9248 (63.3%).		<7%	<7% Fa		ail
Bad f	Bad features		0/9248 (0%).		<7%	Pass		ss

Bioconductor

arrayMagic: http://www.dkfz-heidelberg.de/abt0840/home/buness/WWW/Software/ arrayQuality

http://www.ugrad.stat.ubc.ca/R/library/arrayQuality/doc/guide.html

GeneFilter

http://www.bioconductor.org/packages/bioc/1.8/html/genefilter.html

Gene Filtering

Some common defects

- 1. Feature is smeared into a neighboring feature;
- 2. Feature is very close to background;
- 3. Feature has a hair or a scratch through it;
- 4. Feature is in pieces;
- 5. Feature is saturated;
- 6. Feature pixels have highly non-uniform intensities;
- 7. Feature has a highly non-uniform background.

Note

- Each of these defects is evaluated for each feature individually.
- All filtering conditions should be applied to microarrays that have already been normalized.

Condition 1:

```
Flags >= 0
```

Condition 2: SNR 635 > 3 AND SNR 532 > 3

Sum of Medians (635/532) > 200 % > B635+2SD > 55 AND % > B532+2SD > 55

Conditions 3 and 4:

Circularity > 80

Condition 5:

F635 % Sat. < 2 AND F532 % Sat. < 2

Conditions 6 and 7:

B635 CV < 25 AND B532 CV < 25 Rgn R2 > 0.6

See:

GPR - GenePix Results format (*.gpr)

MSA5: Detection Calls

- Answers: "Is the transcript of a particular gene Present or Absent?"
- Absent means that the expression level is below the threshold of detection. That is, the expression level is not provably different from zero.
- Advantage: easy to filter and easy to interpret: we may only want to look at genes whose transcripts are detectable in a particular experiment.

Saturation

If a mismatch cell is saturated $MM \ge 46000$, the corresponding probe pair is not used in further computations. We also discard pairs where PM and MM are within *tau* of each other.

Discrimination Score $R_i = \frac{PM_i - MM_i}{PM_i + MM_i}$

Computing *p*-values: The one-sided Wilcoxon's Signed Rank Test H_0 : median $(R_i - \tau) = 0$ H_1 : median $(R_i - \tau) > 0$

The null hypothesis is that the target is absent (zero effect on the probes).

Method

There are four steps to the method:

- 1. Remove saturated probe pairs and ignore probe pairs wherein $PM \sim MM + tau$
- 2. Calculate the discrimination scores. (This tells us how different the PM and MM cells are.)
- 3. Use Wilcoxon's rank test to calculate a significance or *p*-value. (This tells us how confident we can be about a certain result.)
- 4. Compare the *p*-value with our preset significance levels to make the call.

Making the call

We set two significance levels α_1 and α_2 such that $0 < \alpha_1 < \alpha_2 < 0.5$

default $\alpha_1 = 0.04$ (16-20 probe pairs) default $\alpha_2 = 0.06$ (16-20 probe pairs)

Significance levels α_1 and α_2 define cut-offs of *p*-values for making calls.

dChip: Filter Genes

1. A < SD/mean < B A < SD (for logged data) < B

A gene is variable enough compared to its mean expression level to contain interesting information (> A), but not so variable that nothing can be learned (< B).

2. Presence call > X%

Narrows genes with a positive presence call in a certain percentage (> X%) of the samples.

3. A < Median(SD/Mean) < B

4. Expression level > Y in X%

Since low expression estimates are sometimes unreliable, we may want to limit our analysis to genes that are expressed above some threshold (>Y) in a certain percentage (X%) of the samples.

ilter Genes 🛛
Filter genes
Criterion (1) Variation across samples (after pooling replicate arrays): 0.5 < Standard deviation / Mean < 10
(2) 🔽 P call % in the arrays used >= 70 %
(3) □ Variation within replicate arrays called Present: 0 < Median(Standard deviation / Mean) < 0.5
(4)
Filter on gene list: using all genes
Filtered gene list: D:\BioInformatics\Web-Oligo\10-Software\dChi make sure the file is closed
Help Options
確定 取消 重用 (A)
http://www.biostat.harvard.edu/complab/dchip/

Missing Values Estimation for Microarray Data

Missing values imply a loss of information

- Many analysis techniques that require complete data matrices: such as hierarchical clustering, k-means clustering, and selforganizing maps.
- May benefit from using more accurately estimated missing values.

Possible Solution

- 1. Exclude missing values from subsequent analysis.
- 2. Repeat the experiment **Expensive.**
- 3. Missing values in replicated design.
- 4. Adjust dissimilarity measures. (e.g., pairwise deletion.)
- 5. Modify clustering methods that can deal with missing values.
- 6. Imputation of missing values.

May be of scientific interest !

Sources of Missing Values

- □ a feature of the robotic apparatus may fail,
- □ a scanner may have insufficient resolution,
- simply dust or scratches on the slide (image corruption),
- □ spots with dust particles, irregularities, ...

Mathematical transformation

- undefined mathematical transformed:
 - e.g., corrected intensities values that are negative or zero, a subsequent log-transformation will yield missing values.

Flag

spots may be flagged as *absent* or *feature not found* when nothing is printed in the location of a spot.

- □ the imaging software cannot detect any fluorescence at the spot,
- expression readings that are barely above the background correction,
- \Box the expression intensity ratio is undefined: */0, 0/*.

GenePix

Good=100. Bad=-100. Not Found=-50. Absent=-75. unflagged=0.

Statistical Classification of Missing Data

It helpful to classify missing values on the basis of the **stochastic mechanism** that produces them.

Missing Completely At Random (MCAR)

- □ Missingness is **independent** of their own unobserved values and the observed data.
- Arising from chance events that are **unrelated to the nature** of the investigation.
- □ **e.g.**, A spot that is obscured accidentally by a dust particle.

Missing At Random (MAR)

Missingness does not depend on their on unobserved value but does dependent on the observed data.

Missing Not At Random (MNAR)

- □ Missingness depend on their own unobserved values.
- □ missingness depdents on the fact that their raw intensity values are zero or small.
- e.g., Spots that show no fluorescence or that have undefined log-intensities because their background-corrected intensities are negative.
- The missing values may give clues to systematic aspects of the problem.
- If missing values do occur by chance among a set of replicates, the observed members of the set can stand in for the missing, albeit with some loss of statistical precision.

Imputation: methods rely on the missingness being of the MCAR type.

Imputation of Missing Values

Missing log2 transformed data are replaced by zeros or by an average expression over the row ("row average").

Row average assumes that the expression of a gene in one of the experiments is similar to its expression in a different experiment, which is often not true in microarray experiments. $C_1 \ C_2 \cdots C_j \cdots C_n$

- Main weakness:
 - it makes no serious attempt to model the connection of the missing values to the observed data.
 - since these methods do not take into consideration the correlation structure of the data.
 - not very effective (Troyanskaya et al, 2001)
- Useful: where an initial imputation is required an iterative imputation method.

K-Nearest Neighbors Imputation

KNNImpute: a missing value estimation method to minimize data modeling assumptions and take advantage of the correlation structure of the gene expression data.

Results are adequate and relatively insensitive to values of k between 10 and 20. (Troyanskaya et al, 2001)

Euclidean distance appeared to be a sufficiently accurate norm.

- Euclidean distance measure is often sensitive to outliers, which could be present in microarray data.
- Log-transformed data seems to sufficiently reduce the effect of outliers on genes similarity determination.

Evaluation of Imputation Methods 13/14 0.4 Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, error 0.35 Tibshirani R, Botstein D, Altman RB. (2001), Missing value 0.3 RMS (estimation methods for DNA microarrays. Bioinformatics 0.25 17(6), 520-525. 0.2 Normalized 0.15 Data sets: 0. 0.05 □ Non-Time Series: Gasch et al., (2000): 755 genes, 173 arrays. 9 10 12 13 14 Time Series: DeRisi et al., (1997): Number of arrays in data set 6135 genes, 7 arrays. Effect of reduction of array number on KNN- and Noisy Times Series: Spellman et al., (1998): 509 genes, 77 arrays. SVD-based estimation on a time series data set noisv time series data set 0.25 **Criterions:** normalized root mean squared error 0.24 0.23 0.2 0.2 0.2 average (NRMSE) SVDimpute 0.2 Normalized 0.1 KNNimpute 0.18 0.17 $\sqrt{\text{mean}[(\mathbf{y}_{guess} - \mathbf{y}_{ans})^2]}$ filled with 0.16 NRMSE =zeros 0.15 $std[y_{ans}]$ 0 10 15 20 Percent of entries missing 0.34 Comparison of KNN, SVD, and row average non-time course micro 0.22 error based estimations' performance 0.32 error 1% entries 0.21 missing 0.3 RMS 5% entries 5% entries missina 0.2 Normalized 0.28 missing Normalized 10% 0.26 10% entrie entries missing missing 0.24 15% entrie 15% missing 0.22 entries missing -20% entries 0.2 20% missing 2 නී 1 30 20 10 entries missing Percent eigengenes used Number of genes used as neighbors Performance of SVD-based imputation with Effect of number of nearest neighbors used for KNN-based estimation on noisy time series data different fractions of eigengenes used for estimation.

Reference

Singular Value Decomposition Imputation

- Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani R, Botstein D, Altman RB. (2001), Missing value estimation methods for DNA microarrays. Bioinformatics 17(6), 520-525.
- Trevor Hastie, Robert Tibshirani, Gavin Sherlock, Michael Eisen, Patrick Brown, David Botstein. (1999). Imputing Missing Data for Gene Expression Arrays, Technical Report.

Local Least Square Imputation

- Bo TH, Dysvik B, Jonassen I. LSimpute: accurate estimation of missing values in microarray data with least squares methods. Nucleic Acids Res. 2004 Feb 20;32(3):e34.
- Hyunsoo Kimy, Gene H. Golubz, and Haesun Parky. (2004). Missing Value Estimation for DNA Microarray Gene Expression Data: Local Least Squares Imputation, Bioinformatics Advance Access published August 27, 2004.

Bayesian

- Oba S, Sato M-A, Takemasa I, Monden M, Matsubara K-I, Ishii S: A Bayesian missing value estimation method for gene expression profile data,. Bioinformatics 2003, 19:2088-2096.
- Zhou X, Wang X, Dougherty ER: Missing-value estimation using linear and non-linear regression with Bayesian gene selection. Bioinformatics 2003, 19:2302-2307.

GMCimpute

 Ouyang M, Welsh WJ, Georgopoulos P. Gaussian mixture clustering and imputation of microarray data. Bioinformatics. 2004 Apr 12;20(6):917-23. Epub 2004 Jan 29.

Others

- Kim KY, Kim BJ, Yi GS. Reuse of imputed data in microarray analysis increases imputation efficiency. BMC Bioinformatics. 2004 Oct 26;5(1):160.
- Shmuel Friedland, Amir Niknejad, and Laura Chiharaz. (2004). A Simultaneous Reconstruction of Missing Data in DNA Microarrays, Institute for Mathematics and its Applications,.
- Alexandre G de Brevern, Serge Hazout and Alain Malpertuy. (2004). Influence of microarrays experiments missing values on the stability of gene groups by hierarchical clustering, BMC Bioinformatics Volume 5.