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What are Gene Regulatory Netw

Wikipedia: A gene regulatory network (also called a GRN or genetic regulatory
network) is a collection of DNA segments in a cell which interact with each other
and with other substances in the cell, thereby governing the rates at which genes
in the network are transcribed into mRNA.

Question?
B [s gene aregulating gene b or vice versa?
B |s the regulation direct

B or indirect where there is a mediating gene ¢ so that a regulates ¢
and then c regulates b?

B Inspecting the finer structure, which are called regulatory network,
give us a more intricate view of molecular interactions offering
further possibilities for medical interventions.

m Inferring regulatory networks from gene expression data, a process
which is called reverse-engineering of gene regulatory network.




From Gene Expression Data to Gene
Regulatory Networks e

First Step Supervised/unsupervised expression profile
learning, or extensive data visualization.

From finding gene clusters to finding the functional roles of the respective
genes, and moreover, to understanding the underlying biological process.

genomes. (e.g., transcription factor binding

Find potential reqgulatory sequence elements in
Next Step

sites, promoter regions,...)

Gene expression data permits us to study finer structure of molecular
pathways exposing causal regulation relations between genes.

Hypothesis

B genes with similar expression profiles (i.e. genes that are co-
expressed) may have common regulatory mechanisms (i.e. they may
be co-regulated), and hence have similar transcription factor binding
sites.




Bayesian Approach %/

Mathematical modeling of regulation inside a network:
B Bayesian network, Boolean network and its generalization,

B ordinary and partial differential equations, qualitative
differential equations, stochastic master equations, Petri nets,

transform grammars, process algebra, and rule-based
formalisms.

Classical Probability: true or physical probability of an
event, measured by repeated trials.

Bayesian Probability: the degree of belief in that event,
measured by arbitrary techniques for sensible choice.

Bayesian approach: offers a clear separation of structure
and parameter optimization, and adding predefined rules
and information is easy, widely used for microarray data.




Bayesian Network Modeling ?/

A Bayesian Network for X={X}, ...X,} consists of

Qualitative part Quantitative part
(a Network Structure): (a set of probability distribution):
Directed acyclic graph (DAG) (G) local conditional probability distributions
m Nodes - random variables (V) are attached to nodes of graph.
B Edges - direct influence (E(, j)) ¢ =P(X;| Pa;)
(no cycles allowed)
. — & 4
| i e | X, Y)=pX
Q@ A ) “\f/ l\D P& D =pX) p(0)
Ll <
E f‘“x }
(x,) (x,) l"'f}{{\' (x,) W
\A1) " A1) " | — o =
al 2/ wy -’ @ O P V) =pX)p(Y|X)
parent child

Together: Define a unique distribution in a factored form.

- Arcs represent probabilistic dependence between variables.
- Conditional probabilities encode the strength of dependencies.




Bayesian Networks | ?/

o S— Learning Bayesian Networks
—3» Bayesian ——» Inference . . .
e Network B Given a training set

( D) X={X, ..X,},

. find a network B = <G, &>
by data that best matches X.

Construction (W |
B Determine the variables to model. @ @

m Build DAG that encodes conditional independence edge: cause -> effect
B Assess local probability distribution & = P( X; | Pa; )

Probabilistic Inference

B Compute a probability of interest given a model.
B Use Bayes theorem and simplify by conditional independence.




Bayesian Networks ?/

B Markov Condition: Each variable X; is independent of its
non-descendants given its parents.

¥ Local probability in X; depends only on the parents.

B Conditional Independence: Given its parents, X; is
independent from the other nodes in the graph.

- Judea Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.
- Heckerman, David: A Tutorial on Learning with Bayesian Networks, MSR-TR-95-06

Gene Expression

B Expression levels X; of nodes V; are considered as random variables and the
edges represent conditional dependencies between distributions of the
random variables.

W V,» V.:gene V,regulates gene V, (up or down-regulation).

Learn the network structure from gene expression data. 0
Problem: Noise, sparse data () ()




Bayesian Statistics

expression level X; of gene or node V; at point j ‘ (XiljllI1<i<n,1<j<m)

joint probability ‘ PXNY)= PX.Y)= PY |X) P(X)= P(X|Y) P(Y)

P(Y | X) P(X)

Bayes’ rule
P(Y)

conditional probability mE) P(X|Y)=

generalization of it forms the chain rule
=) P(K.X.Y.Z) = P(Z|K.X.Y) P(K.X.Y)
— P(Z|K.X.Y)P(Y|K.X) P(K,X)
— P(Z|K.X.Y) P(Y |K.X) P(X | K) P(K).

X and Y are independent - P(XNY)= P(X)Pr(Y)
X and Y are independent for given a value of Z ‘ PX|ZY)= P(X|Z2)




Bayesian Statistics

Bayes Formula:

P9 | D) =

B a .
Posterior

Joint distribution:

PV, D) =

Prior Iikelmood
P(v) P(D | V)
P(D)

P(0) P(D | V)

P(X1.X2. X3,X4) = P(X1) P(X2 | X1) P(X5 | X1) P(X4 | X3)

P(X4|X1.X3.X3)= P(X4 ] X3)




Exercise

P(A,B,C) = P(B|C)P(C|A)P(A)

4 (&

L

P(A,B,C) = P(A|C)P(B|C)P(C)

P(A,B,C) = P(A|C)P(C|B)P(B)

P(A,B,C) = P(C|A,B)P(A)P(B)




More Complex Example

P(ABdDE) — HP(Imde?-__|pa.rentsij

Conditional independence
I(A; E),

I(B;D | A, E),

I(C;A,D,E |B),

|(D;B,C,E|A)

I(E;A,D)

Joint distribution
P(A, B, C, D, E) = P(A)P(BJA, E) P(C|B)P(D|A) P(E)




Biological interpretation

m |s the structure right? Is the order of regulation correct?

B |f there are several possible structures with respect to the
experiments done so far, which one is right? so a graph represents
hypothesis based on current knowledge.

(€

Initiation of cell (sub-)cycle Co-regulation Mediation




Binary Case

%

B Binary case: gene A ) WS N S S S B S
17 1) 1 (SWIS) | -041 -097 -146 0.16 0.74 0.72 1 0.77 0.3
‘(;':an” be Off (O) or 2 (CLN3) 0.49 0.62 0.05 -0.13 0.02 0.04 -0.14 024 091
on (1 ), but not both. 3(CLB1) [ 06 -053 -137 103 113 127 104 1 007
4 (CLN2) | -1.26 1.6 1.54 0.31 -0.14  -0.88 -1.7 -1.88 -1.7
m Having a fixed structure, the
conditional probabilities are easy to
calculate.
gene I 2 I3 Iq I3 s I fg fo
Binomial Distribution 1(SWIS) [ o 0 0 1 1 1 1 1 1
X ~ B(n, p) 2 (CLN3) 1 1 1 0 1 1 0 1 1
HH : 3 (CLB1) 1 0 0 1 1 1 1 1 1
The probab_|l|ty. of getting exactly k Pt o : : : , . . . .
successes is given by the
probability mass function:
[i;f _ T k[i]- . n—i
flkyn,p)={ |P"(1 —p)
Conditional probabilities based on the structure of G
Pr(X1 = 1) X1 |Pr(X2=1) X1 |Pr(X3=1) X3 |Pr(X4=1)
6/9 1 4/6 1 1 1 1/7
0 @ @ 0 1 0 1/3 0 1
0 = {01.621x1)-9G1x1)- 41 x3) }




Type of Variables | ?/

B Discrete variables: Usage of more states for genes like

“low”, “medium”, and “high” follows the multinomial
theory conveniently generalizing the binomial theory.

The probabilities are given by

1l

r Ik ol koo
P(llle,...,lkzIk)z{rl T

0 otherwise.
B Continuous variables: Linear Gaussian model

P(X |uy,...,w) ~ Nag+ Y a;-uj, o).

N\

parents Uy, ..., Uy

B Hybrid Networks




Calculating BN Parameters - e

B Having graph G and the expression matrix D, our aim is to obtain distribution
dependency parameters 8 ={ 01, 6 2,...} that are fitted best to the structure
of G and data D.

B Maximal likelihood method

L : D)= P(D:0)= [ ]| P(X1lj]. X2[j].... Xalj]:6).
j=1

LO:D) = [] PX1[i]1:61)- [ | P(X2li11 X1[4]: 62)
j=1 j=1

m

T PG X1151:09)- T PCXali11 X341 60 (W)
=1

J j=1

L : D) = HL:'(& : D)

m
L1(91 D) = P(D Hy) = 1_[ P(Xr' [j] - 91) — (91)3\3(}{1:1)(1 _{-)l)m_N(Xlzl:] 1
j=1
Pl‘(Xl = 1) — él — N'(Xl =1) 6/‘9 é(2|X1:1) = 4//6, é(EIXle) =1,

N(lel)_i_N(leO) é(3|X1=l) = 1 é(3|X1=0) == 1/f3

é(4|X3:l:l = 1;7, é(4|X3:0) — 1




-

Searching Bayesian Network Structure

B Learning: find network structure which fits the prior

knowledge and data.
B Given a araph G, we know now how to calculate
the par.(z)leter sef 9 G maximizing the likelihood

score L(G, &: D). X

O L(G,0% : D) = P(Xl[m] Xao[m],....Xa[m]: G,69) ;ting of four
ble
= ';ﬂrlnl P(X,[m] | Parents(X,,)[m] : G._ef).l be taken to
S — e ingratein B 1o B (01 -1

Parents(X,,): the expression values of all parents of node V,,.

05 - the parameter of node V,, in graph G.

Given a random sample D compute the posterior probability




Structure

=

log(L(G.0° : D)) =m Z(I(H,Pﬂren‘[s(%)) —H(Vy))

n

=1

Pl‘(X;‘ =X ﬂ P; mxr’)
L, rdr i) = Pr(X; =x S Pl : .
(Vi Patents(V)) = ), PiXi=x P =)le g e —

(¥i):x;=0.1

mutual expression information between node V; and its
parent nodes Parents(V;) = { Py, P2,...}

1

H(Vi))= ) Pr

1
— EPr X, = 1)

entropy of expr X; ofnode V;

Function I(V, ,Parents(V,)) > 0 measures _
how much information the expression values of nodes Parents(V,) provide
about V..

If V. is independent of parent nodes, then I(V,,Parents(V,)) has the value of
Zero.

If V. is totally predictable for given values of Parents(V.), then

I(V. ,Parents(V.)) reduces into the entropy function H(V,).

m |t should be noted that in general I(X,Y ) =I1(Y , X) so the direction of
edges matters.




e -

Searching Bayesian Network Structure

W |s the structure optimal with respect to the data?

B Search for high scoring structure by greedy
search, simulated annealing

o

7/9, O,

I, 031x,=0.x4=1)
: 031x,=1.X4=1)

L/3, 0(11x3=1)

0
0(31X,=0,X4=0)
0(31X,=1,X4=0)
0(11x3=0)

4D
e
O

1 | | |
p—t T

[a—




Yeast Cell Cycle

Spellman et. al. (1998): Microarray data of yeast

cell cycle

6177 genes, 76 samples of all the yeast
genome, six time series.

Identified 800 cell cycle regulated genes, and
clustered them 250 genes in 8 clusters.

Friedman et al analyzed these 250 genes
by a Bayesian network.

Multinomial model: treat each variable as
discrete and learn a multinomial distribution
that describes the probability of each
possible state of the child variable given the
state of its parents.

Discretize the gene expression values:
B under-expressed (-1),
m normal (0), and

B over-expressed (1),
depending on whether the expression
rate is significantly lower than, similar
to, or greater than control.

m Histones

Spellman et. al. (1998).
http://cellcycle-www.stanford.edu/




Analyzing Expression Data

m Width (color) of edges: the local map for the gene SVS
computed confidence level.

m CLN2 separates SVS1 from () o
several other genes ) @ @

B There is a strong connection g Q

between CLN2 to all these @

genes, there are no other edges .

connecting them

B These genes are conditionally
independent given the M“N*
expression level of CLN2.

Friedman N, Linial M, Nachman | and Pe'er D (2000), @
Using Bayesian networks to analyze expression data. f
Journal of Computational Biology, 7:601-620. oz X .

CLET G @
http://www.cs.huji.ac.il/labs/compbio/expression/

Small datasets with many variables:
many different networks are reasonable explanations of the data

|Z> Focus on features that are common to most of these networks.




Biological Analysis

Order relations (global property)

M |s gene X an ancestor of gene Y in all network of a given equivalence class?
B Dominant Genes: out of 800 genes, only a few seem to dominate the order
appear before many genes.

B These gene are indicative of potential causal sources of the cell-cycle process
directly involved in initiation of the cell cycle and its control:

CLN1, CLN2, CDC15 and RAD53 (functional relation has been established)

1

TasLe 1. Lisr oF DoMinanT GENES IN THE ORDERING RELATIONS

Score in experiment

Ld
MarkOV relatlons (local Gene/ORF Muliinomial Gaussian Notes
prOpertY) MCD1 350 525 Mitotic Chromosome Determinant, null mutant is inviable
. . MSH6 292 508 Required for mismatch repair in mitosis and meiosis
[ | |S gene X an dlreCt re|atlve Cs12 444 497 Cell wall maintenance, chitin synthesis
CLN2 497 454 Role in cell cycle START, null mutant exhibits G1 arrest
Of gene Y? YLRIB3C 551 448 Contains forkheaded associated domain, thus possibly nuclear
. RFA2 456 423 Involved in nucleotide excision repair, null mutant is inviable
H TOp Scoring Karkov RSRI 352 395 GTP-binding protein of the RAS family involved in bud site selection
. CDC45 — 394 Required for initiation of chromosomal replication, null mutant lethal
re|at|OnS between geneS RADS3 60 383 Cell cycle control, checkpoint function, null mutant lethal
. . CDC5 200 353 Cell cycle control, required for exit from mitosis, null mutant lethal
We re fOUnd tO |nd|Cate a POL30 376 321 Required for DNA replication and repair, null mutant is inviable
. . . . . YOX1 400 291 Homeodomain protein
relation in blO'OglCa| function.  sros 463 239 Involved in cellular polarization during budding
CLN1 324 — Role in cell cycle START, null mutant exhibits G1 arrest
YBROSOW 298 —

"ncluded are the top 10 dominant genes for each experiment.
In general
BN provide us with a tool that allows biologically plausible conclusion from the data




Software: BNArray

BNArray: http://www.cls.zju.edu.cn/binfo/BNArray/

B [Impute missing values (LLSimpute)

B Construct Bayesian network and Bootstrap Bayesian networks
B Reconstruct significant coherent regulatory modules

cln3-1 cln3-2 Clb2-2 clb2-1 Alpha

YALO01C 0.15 -0.22 0.07 -0.15

YALOOZW -0.07 -0.76 -0.12 -0.23 -0.11

YALOO3W -1.22 -0.27 -0.1 0.23 -0.14

YALOOAW -0.09 1.2 0.16 -0.14 -0.02

)

B Gene YBLOO9W (unknown ORF) co-regulates H2A

(YBLO0O3C) and H2B (YBLO0O2W).
B H2A and H2B form a compound during DNA
replication process.

B YBLOO9W is a haspin which is involved in the meiosis
process annotated in GO Biological Process database

(check in SGD).

Score: -411 6091
Relscore: 7.996415e-06

Chen X, Chen M, Ning K. BNArray: an R package for constructing gene regulatory networks
from microarray data by using Bayesian network. Bioinformatics. 2006 Sep 27




E-Book

DNA Microarray
Data Analysis

HIRIS HOVATTA, KATIA KIMPPA, ANTTI LEHMUSSOLA, TOMI PASANEN,
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http://www.csc.fi/molbio/arraybook/

=
Array 1 Signal

1 |Probeset Gene Name

| 2 |103941_at alpha-spectin 1, erythroid 33.7625
3 [104432_at aplysia ras-related homolog N (Rhon) 121.736
| 4 |104137_at ATP-binding cassette, sub-family A (ABC1), member 2 109.522
5 198458_at baculoviral IAP repeal-containing 5 128.96
93243 _at _ bone morphogenetic protein 7 174.85

7 |95061_at  breast carcinoma amplified sequence 2 338
B |102632_at calmodulin binding protein 1 69.888
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