Microarray Data Analysis

Data Preprocessing for Affymetrix GeneChip

國立台灣大學資訊所

Course: 生物資訊與計算分子生物學 2006/11/07

吳漢銘 <u>hmwu@stat.sinica.edu.tw</u> http://www.sinica.edu.tw/~hmwu

://ww

Outlines

GeneChip Expression Array Design

Assay and Analysis Flow Chart

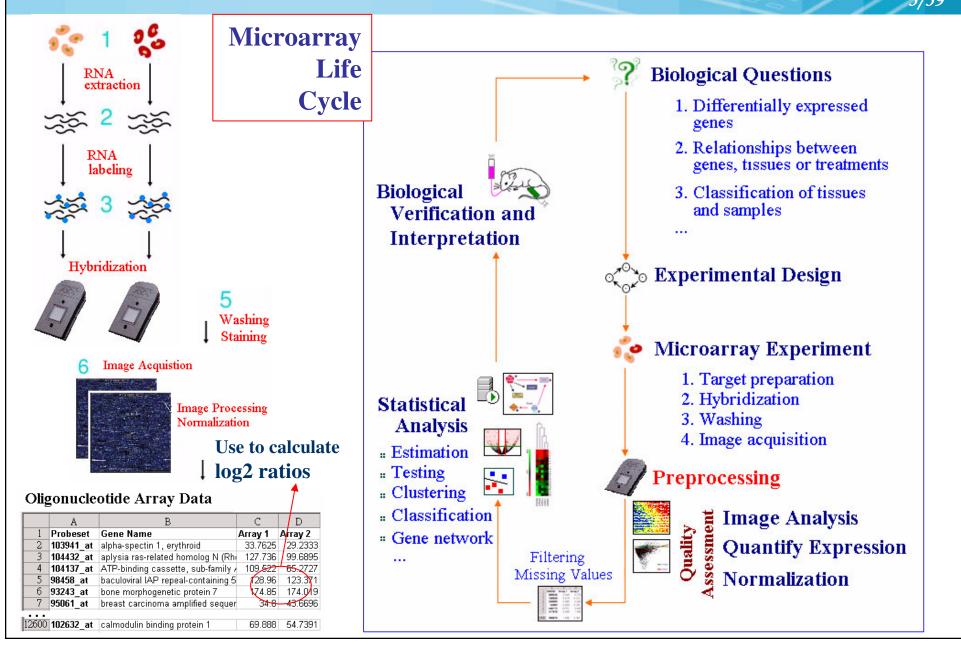
Image Analysis, Affymetrix Data Files, from DAT to CEL.

Quality Assessment

- RNA Sample Quality Control
- Array Hybridization Quality Control
- Statistical Quality Control (Diagnostic Plots)

Low level Analysis

(from probe level data to expression value)


- Background Correction, Normalization, PM Correction, Expression Index
- Liwong Model, RMA

Software

- Freeware: BioConductor, dChip, RMAExpress
- Commercial: GCOS, GeneSpring

Overview of Microarray Experiment

GeneChip Expression Array Design

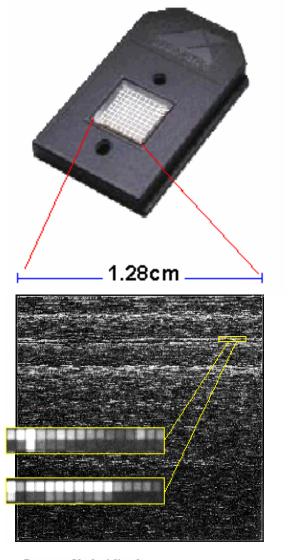
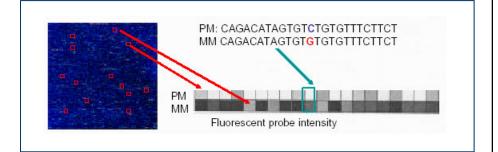
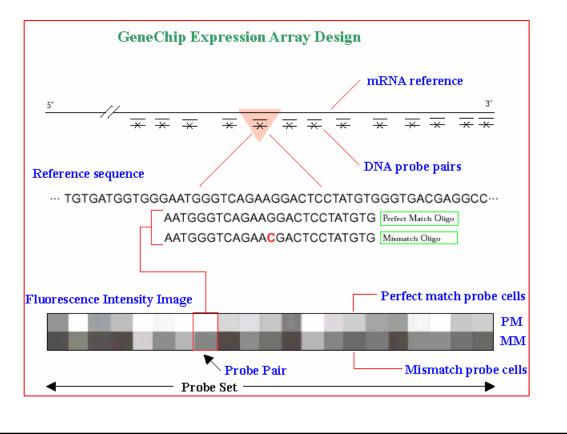
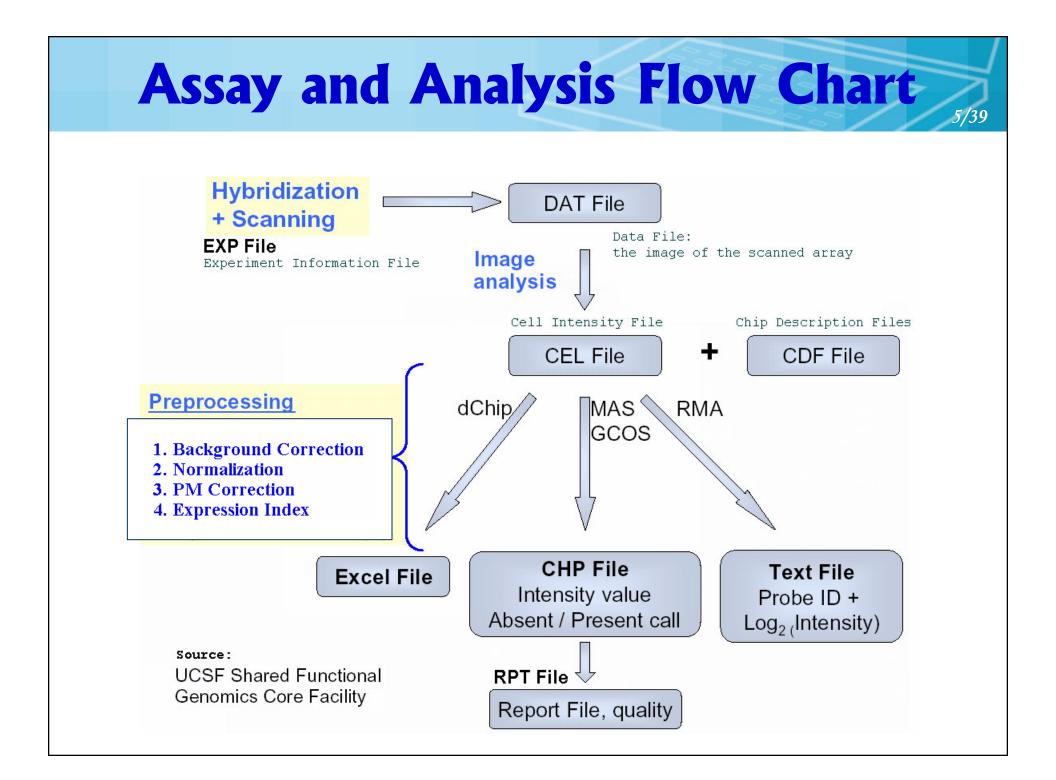





Image of hybridized probe array

Affymetrix Data Files

[CEL] Version=3

[HEADER]

Cols=712

Rows=712

TotalX=712

TotalY=712

OffsetX=0

OffsetY=0

GridCornerUL=230 231

GridCornerUR=4503 235

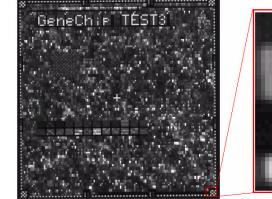
GridCornerLR=4499 4506

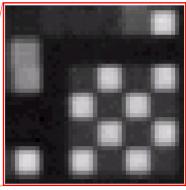
GridCornerLL=226 4502

Axis-invertX=0

AxisInvertY=0 swapXY=0

*.EXP file


Affymetrix GeneChip Experiment Information **Version** 1


[Sample Info] Chip Type HG-U133A Chip Lot Operator array Sample Type RNA Description Project Dr. Mi Comments Solution Tupe Solution Lot [Fluidics] Protocol EukGE-WS204 Completed Station 1 Module 2 Hybridize Date Oct 19 2004 01:17PM [Scanner] Pixel Size 3

Filter 570 Scan Temperature Scan Date Oct 19 2004 01:41PM Scanner ID Number of Scans 2 HP Scanner Type

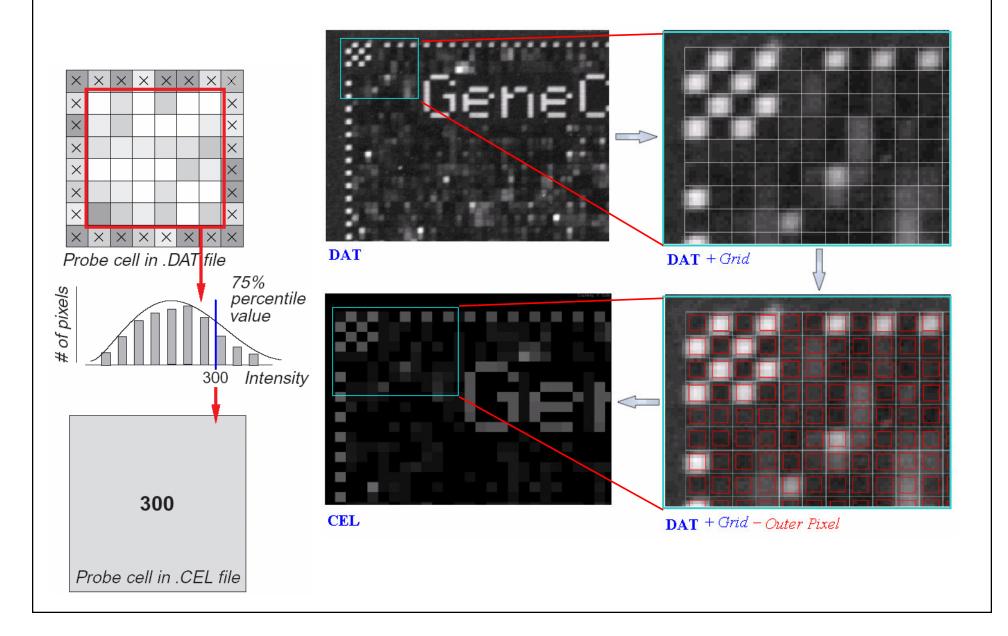
CEL File Conversion Tool

*.DAT file ~50MB

*.CEL file ~12MB

DatHeader=[9..46155] 7:CLS=4733 RWS=4733 XIN=3 VIN=3 UE=17

(Version 4) \sim 5MB


ffsetY=0 GridCornerUL=230 231 GridCornerUR=4503 235 GridCornerLR=4499 4506 GridCornerLL=226 4502 Axis-invertX=0 AxisInvertY=0 swapXY=0 DatHeader=[9..4 61551 7:CLS=4733 RWS=4733 XIN=3 YIN=3 UE=17 2.0 02/24/04 13:41:05 HP HG-U133A.1sa 6 Algorithm=Percentile AlgorithmParameters=Percentile:75;CellMargin:2;OutlierHigh:1.500;OutlierLow :1.004 ■■■Percentile>■■■Percentile=75 CellMargin=2 OutlierHigh=1.500 Outli A ■■■嫌P9HA ■■璇EF?D ■■■魚!??A ■■拎E O D ■■■潮iw @ A ■■ rE澹 D ■■■呼∪_ A ■■ ■EhG)D ■■■憔湃#4 ■■4mE? D ■■■穗 ?A ■■ iE h D ■■■譒!現A ■■xfE? D ■■■嫁!鞱

> HP 2.0 02/24/04 13:41:05

Algorithm=Percentile AlgorithmParameters=Percentile:75;CellMargin:2;OutlierHigh:1.500;OutlierLow:1.004

[INTENSITY] NumberCells=506944 CellHeader=X Y. MEAN STDU NPIXELS Θ Θ 114.5 14.7 16 Θ 4711.5 721.0 16 1 2 Θ 111.8 13.9 16

From DAT to CEL

7/39

MAS5.0 Analysis Output File

	Analysis Name	Probe Set Name	Stat Pairs	Stat Pairs Used	Signal	Detection	Detection p-value	Stat Comr
1	030606 En test3	Pae_16SrRNA_s_at	16	16	11.3	А	0.872355	
2	030606 En test3	Pae_23SrRNA_s_at	16	16	26.6	А	0.378184	
3	030606 En test3	PA1178_oprH_at	12	12	5.4	А	0.975070	
4	030606 En test3	PA1816_dnaQ_at	12	12	5.9	А	0.805907	
5	030606 En test3	PA3183_zwf_at	12	12	7.9	А	0.708540	
6	030606 En test3	PA3640_dnaE_at	12	12	10.8	A	0.964405	
7	030606 En test3	PA4407_ftsZ_at	12	12	9.5	A	0.921030	
8	030606 En test3	Pae_16SrRNA_s_st	16	16	8.9	A	0.660442	
9	030606 En test3	Pae_23SrRNA_s_st	16	16	22.0	A	0.561639	
10	030606 En test3	PA1178_oprH_st	12	12	35.1	Ρ	0.024930	
11	030606 En test3	PA1816_dnaQ_st	12	12	34.7	A	0.240088	
12	030606 En test3	PA3183_zwf_st	12	12	6.5	А	0.985972	
13	030606 En test3	PA3640_dnaE_st	12	12	87.5	A	0.173261	
14	030606 En test3	PA4407_ftsZ_st	12	12	47.5	A	0.623158	
15	030606 En test3	AFFX-Athal-Actin_5_r_at	16	16	89.8	P	0.013092	
T	Analysis Info Me	trics (Pivot / L						,

Metrics

Pivot

	03060	6 En test3	Descriptions
	Signal	Detection	
Pae_16SrRNA_s_at	11.3	A	
Pae_23SrRNA_s_at	26.6	A	
PA1178_oprH_at	5.4	A	
PA1816_dnaQ_at	5.9	A	
PA3183_zwf_at	7.9	A	
PA3640_dnaE_at	10.8	A	
PA4407_ftsZ_at	9.5	A	
Pae_16SrRNA_s_st	8.9	A	
Pae_23SrRNA_s_st	22.0	A	
PA1178_oprH_st	35.1	P	
PA1816_dnaQ_st	34.7	A	
PA3183_zwf_st	6.5	A	
PA3640_dnaE_st	87.5	A	
PA4407_ftsZ_st	47.5	A	

8/39

(*.CHP)

Quality Assessment

RNA Sample Quality Control

- Validation of total RNA
- Validation of cRNA
- Validation of fragmented cRNA

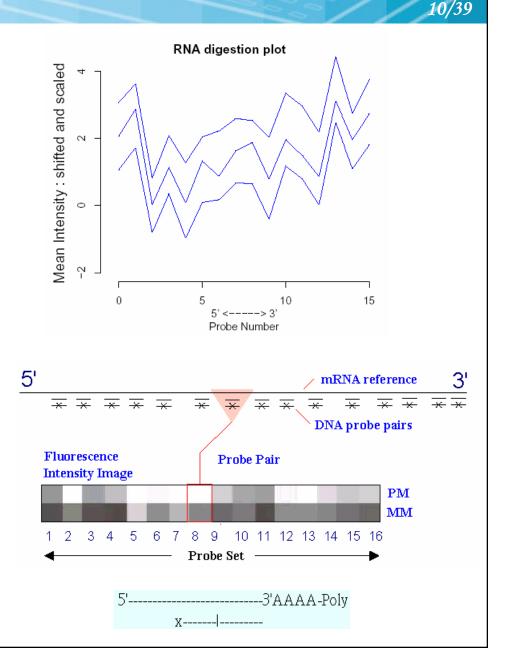
Array Hybridization Quality Control

- Probe Array Image Inspection (DAT, CEL)
- B2 Oligo Performance
- MAS5.0 Expression Report Files (RPT)
 - Scaling and Normalization factors
 - Average Background and Noise Values
 - Percent Genes Present
 - Housekeeping Controls: Internal Control Genes
 - Spike Controls: Hybridization Controls: bioB, bioC, bioD, cre
 - Spike Controls: Poly-A Control: dap, lys, phe, thr, trp

Statistical Quality Control (Diagnostic Plots)

Two aspects of quality control: detecting poor hybridization and outliers

Reasons for poor

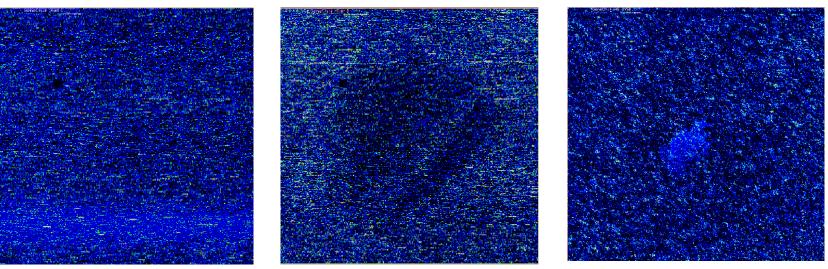

hybridizations

- mRNA degenerated
- one or more experimental steps failed
- □ poor chip quality, ...
- reasons for (biological)
- outliers
 - infiltration with non-tumour tissue
 - wrong label
 - □ contamination, ...

RNA Degradation Plots

Assessment of RNA Quality:

- Individual probes in a probe set are ordered by location relative to the 5' end of the targeted RNA molecule.
- Since RNA degradation typically starts from the 5' end of the molecule, we would expect probe intensities to be systematically lowered at that end of a probeset when compared to the 3' end.
- On each chip, probe intensities are averaged by location in probeset, with the average taken over probesets.
- The RNA degradation plot produces a side-by-side plots of these means, making it easy to notice any 5' to 3' trend.

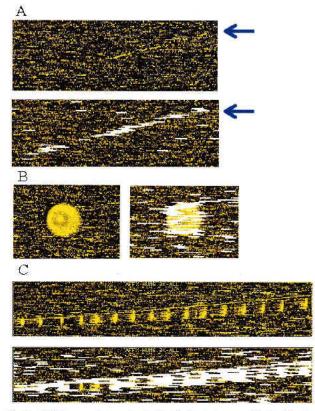

Probe Array Image Inspection

- Saturation: PM or MM cells > 46000
- Defect Classes: dimness/brightness, high Background, high/low intensity spots, scratches, high regional, overall background, unevenness, spots, Haze band, scratches, crop circle, cracked, cnow, grid misalignment.
- As long as these areas do not represent more than 10% of the total probes for the chip, then the area can be masked and the data points thrown out as outliers.

Haze Band

Crop Circles

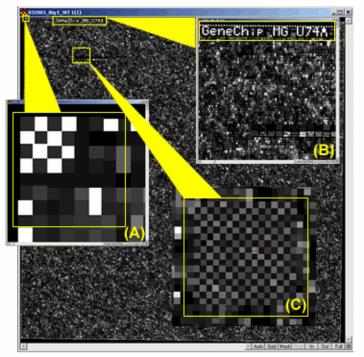
Spots, Scratches, etc.


Source: Michael Elashoff (GLGC)

Probe Array Image Inspection (conti.)

Li, C. and Wong, W. H. (2001) Model-based analysis of oligonucleotide arrays: Expression index computation and outlier detection, Proc. Natl. Acad. Sci. Vol. 98, 31-36.

Fig. 1. A contaminated D array from the Murine 6500 Affymetrix GeneChip® set. Several particles are highlighted by arrows and are thought to be torn pieces of the chip cartridge septum, potentially resulting from repeatedly pipetting the target into the array.



12/39

Fig. 5. (*A*) A long scratch contamination (indicated by arrow) is alleviated by automatic outlier exclusion along this scratch. (*B* and *C*) Regional clustering of array outliers (white bars) indicates contaminated regions in the original images. These outliers are automatically detected and accommodated in the analysis. Note that some probe sets in the contaminated region are not marked as array outliers, because contamination contributed additively to PM and MM in a similar magnitude and thus cancel in the PM–MM differences, preserving the correct signals and probe patterns.

B2 Oligo Performance

- Make sure the alignment of the grid was done appropriately.
- Look at the spiked in Oligo B2 control in order to check the hybridization uniformity.
- The border around the array, the corner region, the control regions in the center, are all checked to make sure the hybridization was successful.

Affymetrix CEL File Image- Yellow squares highlighting various Oligo B2 control regions: (A) one of the corner regions, (B) the name of the array, and (C) the "checkerboard" region.

Source: Baylor College of Medicine, Microarray Core Facility

MAS5.0 Expression Report File (*.RPT)

Report Type: Date:	Expression Repor 04:42PM 02/24/2		The Scaling Factor- In general, the scaling					
Filename: Probe Array Type: Algorithm: Probe Pair Thr: Controls:	test.CHP HG-U133A Statistical 8 Antisense		is not greate ■ The scalin	I be around three, but as long as it r than five, the chip should be okay. g factor (SF) should remain				
Alphal: Alpha2: Tau: Noise (RawQ): Scale Factor (SF): TGT Value: Norm Factor (NF):	0.05 0.065 0.015 2.250 5.422 500 1.000		CONSISTENT at	cross the experiment.				
Background: Avg: 64.23 Noise:	std: 1.75	Min: 59.50	Max: 67.70	 Average Background: 20-100 Noise < 4 				
Avg: 2.54 Corner+	Std: 0.14	Min: 2.10	Max: 3.00	·				
Avg: 49 Corner-	Count: 32	The r	neasure of Nois	e (RawQ), Average Background and				
Avg: 5377 Central-	Count: 32	U U	e Noise values should remain consistent across the					
Avg: 4845	Count: 9	experim	ient.					

The following data represents probe sets that exceed the probe pair threshold and are not called "No Call".

Total Probe Set Number Present: Number Absent: Number Marginal		22283 9132 12766 385	41.0% 57.3% 1.7%
Average Signal Average Signal Average Signal Average Signal	(A): (M):	1671.0 119.6 350.1 759.3	

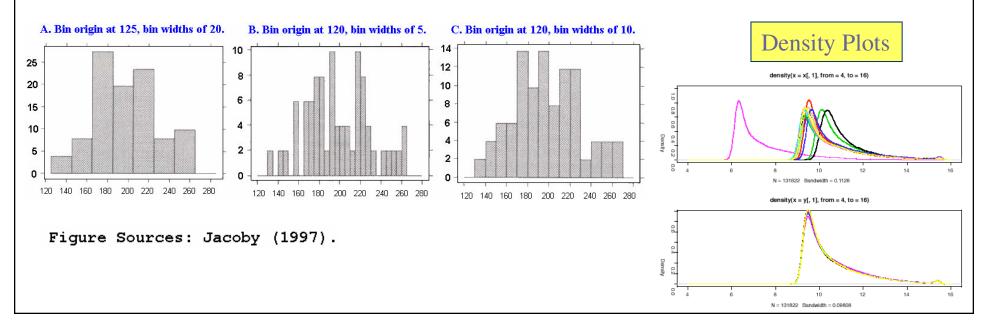
Percent Present : 30~50%, 40~50%,	
50~70%.	

Low percent present may also indicate degradation or incomplete synthesis.

MAS5.0 Expression Report File (*.RPT)

■ Sig (3'/5')- This is a ratio which tells us how well the labeling reaction went. The two to really look at are your 3'/5' ratio for GAPDH and B-ACTIN. In general, they should be less than three.

Spike-In Controls (BioB, BioC, BioD, Cre)- These spike in controls also tell how well your labelling reaction went. BioB is only Present half of the time, but BioC, BioD, & Cre should always have a present (P) call.


Housekeeping Controls:									
Probe Set	Sig(5')	Det(5')	Sig(M')	Det(M')	Sig(3')	Det(3')	Sig(all)	Sig(3'/5')	
AFFX-HUMISGF3A/M97935	272.8	P	856.8	P	1274.5	P	801.36	4.67	
AFFX-HUMRGE/M10098	340.6	м	181.3	A	632.6	P	384.80	1.86	
AFFX-HUMGAPDH/M33197	13890.6	P	15366.6	P	14060.7	P	14439.32	1.01	
AFFX-HSAC07/X00351	35496.8	P	39138.0	P	31375.0	P	35336.61	0.88	
AFFX-M27830	469.2	P	2206.1	A	114.3	A	929.86	0.24	
Spike Controls:									
Probe Set	Sig(5')	Det(5')	Sig(M')	Det(M')	Sig(3')	Det(3')	Sig(all)	Sig(3'/5')	
AFFX-BIOB	559.0	P	801.6	P	385.8	P	582.14	0.69	
AFFX-BIOC	1132.9	P			818.0	P	975.47	0.72	
AFFX-BIOD	874.7	P			6918.1	P	3896.42	7.91	
AFFX-CRE	10070.5	P			16198.0	P	13134.27	1.61	
AFFX-DAP	10.9	A	60.9	A	8.5	A	26.75	0.78	
AFFX-LYS	51.5	A	86.2	A	14.1	A	50.62	0.27	
AFFX-PHE	4.9	A	4.0	A	40.0	A	16.30	8.20	
AFFX-THR	20.3	A	53.2	A	18.7	A	30.77	0.92	
AFFX-TRP	9.8	A	11.1	A	2.7	A	7.86	0.28	
AFFX-R2-EC-BIOB	497.6	P	928.0	P	479.4	P	634.98	0.96	
AFFX-R2-EC-BIOC	1319.9	P			1705.0	P	1512.50	1.29	
AFFX-R2-EC-BIOD	4744.0	P			4865.7	P	4804.82	1.03	
AFFX-R2-P1-CRE	25429.2	P			30469.5	P	27949.37	1.20	
AFFX-R2-BS-DAP	5.9	A	1.6	A	3.3	A	3.58	0.55	
AFFX-R2-BS-LYS	32.2	A	43.7	м	74.7	P	50.18	2.32	
AFFX-R2-BS-PHE	14.8	A	27.5	A	146.5	A	62.91	9.93	
AFFX-R2-BS-THR	209.5	P	152.9	A	15.8	A	126.08	0.08	

Statistical Plots: Histogram

- 1/2h adjusts the height of each bar so that the total area enclosed by the entire histogram is 1.
- The area covered by each bar can be interpreted as the probability of an observation falling within that bar.

Disadvantage for displaying a variable's distribution:

- selection of origin of the bins.
- selection of bin widths.
- the very use of the bins is a distortion of information because any data variability within the bins cannot be displayed in the histogram.

O. Bin origin at 120, bin widths of 20.

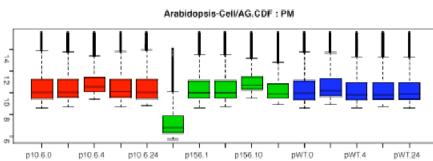
140 160 180 200 220 240 260

Medical Program Quality Score

280

20


Percent of Total 9 01 05


0

120

Statistical Plots: Box Plots

Box plots (Tukey 1977, Chambers 1983) are an excellent tool for conveying location and variation information in data sets, particularly for detecting and illustrating location and variation changes between different groups of data.

The box plot can provide answers to the following questions:

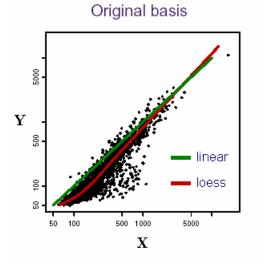
- Is a factor significant?
- Does the location differ between subgroups?
- Does the variation differ between subgroups?
- Are there any outliers?

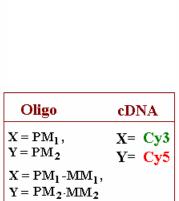
Further reading: http://www.itl.nist.gov/div898/handbook/eda/section3/boxplot.htm

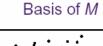
Scatterplot and MA plot

Features of scatter plot.

- the substantial correlation between the expression values in the two conditions being compared.
- the preponderance of low-intensity values. (the majority of genes are expressed at only a low level, and relatively few genes are expressed at a high level)
- **Goals:** to identify genes that are differentially regulated between two experimental conditions.
- Outliers in logarithm scale
 - spreads the data from the lower left corner to a more centered distribution in which the prosperities of the data are easy to analyze.
 - easier to describe the fold regulation of genes using a log scale. In log2 space, the data points are symmetric about 0.


8


÷


÷.

 $\mathbf{M}^{\mbox{s}}$

MA plots can show the intensity-dependant ratio of raw microarray data.

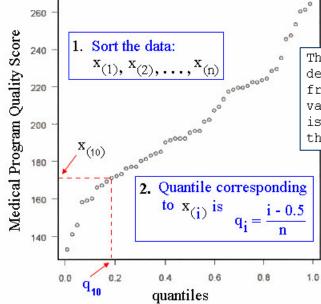
linear

loess

12

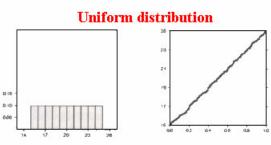
10

 \mathbf{A}

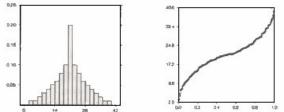

x-axis (mean log2 intensity): average intensity of a particular element across the control and experimental conditions.

18/39

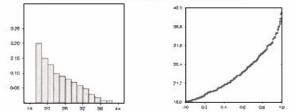
y-axis (ratio): ratio of the two intensities.


Quantile Plots

The empirical quantiles



The qth quantile of a data set is defined as that value where a q fraction of the data is below that value and (1-q) fraction of the data is above that value. For example, the 0.5 quantile is the median.


Comparison of histogram and Quantile plots for differently shaped data distribution

Symmetric, bell-shaped distribution

Positively skewed distribution

- 0.5 is subtracted from each i value to avoid extreme quantiles of exactly 0 or 1.
- The latter would cause problems if empirical quantiles were to be compared against quantiles derived from a theoretical. asymptotic distribution such as the normal.
- This adjustment has no effect on the shape of any graphical display.

Figures modified from Jacoby (1997)

Low level analysis

20/39

Background Methods **PM correction** Normalization **Summarization Methods Methods Methods** none quantiles avgdiff mas rma/rma2 loess pmonly liwong mas subtractmm contrasts mas medianpolish constant invariantset playerout Qspline

The Bioconductor affy package

٠	MAS5
	eset.mas5 <- expresso(Data, bg.correct="mas", normalize.method = "constant",
	pmcorrect.method="mas", summary.method="mas")
٠	Liwong (PM-only Model)
	eset.liwong <- expresso(Data, bg.correct=FALSE, normalize.method = "invariantset", pmcorrect.method="pmonly", summary.method="liwong")
٠	Liwong (PM-MM Model)
	eset.liwong <- expresso(Data, bg.correct=FALSE, normalize.method = "invariantset", pmcorrect.method="subtractmm", summary.method="liwong")
•	RMA
	eset.rma <- expresso(Data, bg.correct="rma", normalize.method = "quantiles",
	pmcorrect.method="pmonly", summary.method="medianpolish")
•	Other
	eset <- expresso(Data, bg.correct="mas", normalize.method="qspline", pmcorrect.method="subtractmm", summary.method="playerout")

Background Correction/Adjustment

What is background?

- A measurement of signal intensity caused by auto fluorescence of the array surface and non-specific binding.
- Since probes are so densely packed on chip must use probes themselves rather than regions adjacent to probe as in cDNA arrays to calculate the background.
- In theory, the MM should serve as a biological background correction for the PM.

What is background correction?

A method for removing background noise from signal intensities using information from only one chip.

Normalization

Sources of Variation

amount of RNA in the biopsy efficiencies of

PCR vield

DNA quality

stray signal

- RNA extraction
- reverse transcription
- labeling
- photodetection

→ Systematic → Normalization

- **similar effect on many measurements**
- corrections can be estimated from data
- → Stochastic → Error Model **#** too random to be explicitely accounted for **noise**

Spotting efficiency, spot size cross- or unspecific-hybridization

What is normalization?

- Non-biological factor can contribute to the variability of data, in order to reliably compare data from multiple probe arrays, differences of non-biological origin must be minimized.
- Normalization is a process of reducing unwanted variation across chips. It may use information from multiple chips.

Why normalization?

Normalization corrects for overall chip brightness and other factors that may influence the numerical value of expression intensity, enabling the user to more confidently compare gene expression estimates

between samples.

Main idea

Remove the systematic bias in the data as completely possible while preserving the variation in the gene expression that occurs because of biologically relevant changes in transcription.

Assumption

The average gene does not change in its expression level in the biological sample being tested.

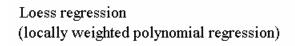
Most genes are not differentially expressed or up- and down-regulated genes roughly cancel out the expression effect.

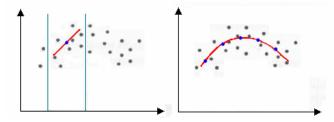
Normalization: Options

Levels

PM&MM, PM-MM, Expression indexes

Features


All, Rank invariant set, Spike-ins, housekeeping genes.

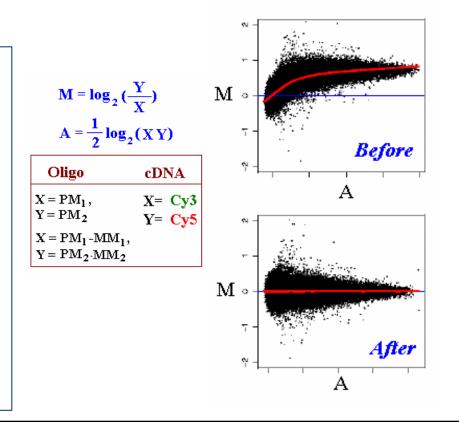

Methods

- Complete data: no reference chip, information from all arrays used: Quantiles Normalization, MVA Plot + Loess
- Baseline: normalized using reference chip: MAS 4.0, MAS 5.0, Li-Wong's Model-Based, Qspline

Normalization: loess Method

- Loess normalization (Bolstad *et al.*, 2003) is based on MA plots. Two arrays are normalized by using a lowess smoother.
- Skewing reflects experimental artifacts such as the
 - contamination of one RNA source with genomic DNA or rRNA,
 - the use of unequal amounts of radioactive or fluorescent probes on the microarray.
- Skewing can be corrected with local normalization: fitting a local regression curve to the data.

- **1.** For any two arrays i, j with probe intensities x_{ki} and x_{kj} where $k = 1, \ldots, p$ represents the probe
- 2. we calculate


$$M_k = \log_2 (x_{ki}/x_{kj})$$
 and $A_k = \frac{1}{2} \log_2 (x_{ki}x_{kj})$.

3. A normalization curve is fitted to this *M* versus *A* plot using loess.

Loess is a method of local regression (see Cleveland and Devlin (1988) for details).

- 4. The fits based on the normalization curve are \hat{M}_k
- 5. the normalization adjustment is $M'_k = M_k \hat{M}_k$.

6. Adjusted probe intensites are given by $x'_{ki} = 2^{A_k + \frac{M'_K}{2}}$ and $x'_{ki} = 2^{A_K - \frac{M'_k}{2}}$.

PM Correction Methods

PM only

make no adjustment to the PM values.

Subtract MM from PM

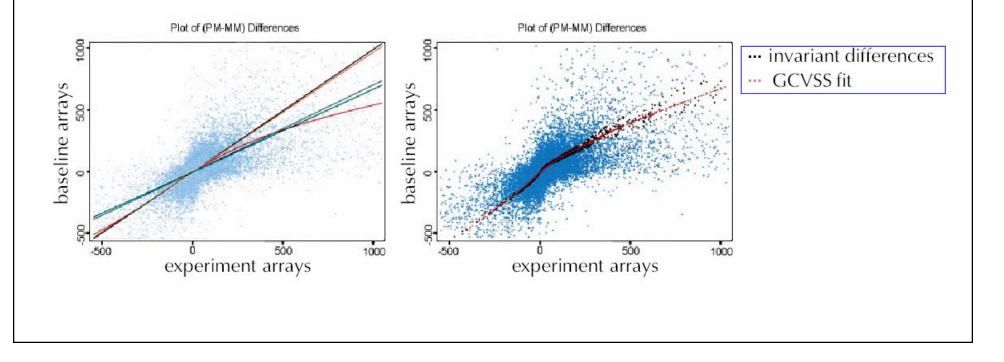
This would be the approach taken in MAS 4.0 Affymetrix (1999). It could also be used in conjunction with the liwong model.

Expression Index Estimates

Summarization

- Reduce the 11-20 probe intensities on each array to a single number for gene expression.
- The goal is to produce a measure that will serve as an indicator of the level of expression of a transcript using the PM (and possibly MM values).
- The values of the PM and MM probes for a probeset will be combined to produce this measure.

Single Chip


- avgDiff : no longer recommended for use due to many flaws.
- Signal (MAS5.0): use One-Step Tukey biweight to combine the probe intensities in log scale
- average log 2 (PM BG)
- Multiple Chip
 - **MBEI** (li-wong): a multiplicative model
 - RMA: a robust multi-chip linear model fit on the log scale

Liwong: Normalization

(Li and Wong, 2001)

invariant set

- Using a baseline array, arrays are normalized by selecting invariant sets of genes (or probes) then using them to fit a non-linear relationship between the "treatment" and "baseline" arrays.
- The non-linear relationship is used to carry out the normalization.
- A set of probe is said to be invariant if ordering of probe in one chip is same in other set.
- Fit the non-linear relation using cross validated smoothing splines (GCVSS).

Liwong: Summarization Method

(Model-Based Expression Index, MBEI)

- If there are multiple arrays from the same experiment available, this model provides an intuitive estimate of the mean and standard error of the θ s and φ s.
 - The standard error estimates of the θ s and φ s can be used to identify outlier arrays and probes that will consequently be excluded from the final estimation of the probe response pattern. For each array, this model computes an expression level on the ith array θ i.
 - If a specific array has a large standard error relative to other arrays, possibly due to external factors like the imaging process, then this is called an **outlier array**.
 - Similarly, if the estimate of φ j for the jth probe has a large standard error, possibly due to non-specific cross-hybridization, it is called an outlier probe.
 - Individual PM-MM differences might also be identified by large residuals compared with the fit; these single outliers are regarded as missing values in the model-fitting algorithm.
- Cross-hybridization is more likely to occur at the MM probes, rather than the PM probes, and so a PM-only model exists that calculates expression values that are always positive (Li and Wong 2001). Studies suggest that the PM-only model is more robust to cross-hybridization than the PM-MM difference model.

For a gene	
$y_{ij} = \phi_i \theta_j + \epsilon_{ij}$	$\sum_j \phi_j^2 = J$
y_{ij} is PM_{ij} or the difference between $PM_{ij} - MM_{ij}$.	$\epsilon_{ij} \sim N\left(0, \sigma^2\right)$
ϕ_i is a probe response parameter	$i = 1, \ldots, I$ the number of chips
θ_j is the expression on array j .	$i = 1, \dots, I$ the number of chips $j = 1, \dots, J$ number of probe pairs

RMA: Background Correction

RMA: Robust Multichip Average (Irizarry and Speed, 2003)

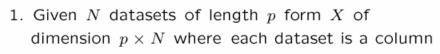
- Assumes PM probes are a convolution of normal and exponentional.
- ObservedPM = Signal + Noise, (O = S + N).

Assume

- Signal is exponentional (alpha)
- Noise (background) is Normal (mu, sigma).
- Use E[S|O=o, S>0] as the backround corrected PM.
- MM probe intensities are not corrected by RMA/RMA2.

$$E(s|O = o) = a + b \frac{\phi\left(\frac{a}{b}\right) - \phi\left(\frac{o-a}{b}\right)}{\Phi\left(\frac{a}{b}\right) + \Phi\left(\frac{o-a}{b}\right) - 1}$$

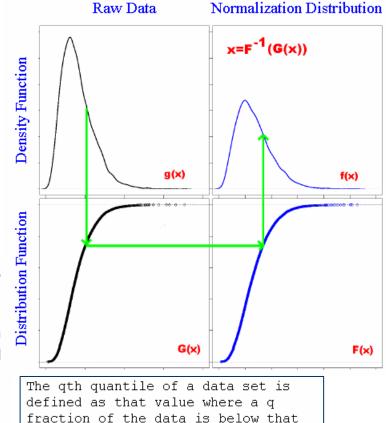
$$a = s - \mu - \sigma^2 \alpha$$


$$b = \sigma$$

$$\phi: \text{standard normal density function}$$

$$\Phi: \text{standard normal distribution function}$$

RMA: Normalization


- Quantiles Normalization (Bolstad *et al*, 2003) is a method to make the distribution of probe intensities the same for every chip. That is each chip is really the transformation of an underlying common distribution.
- The two distribution functions are effectively estimated by the sample quantiles.
- The normalization distribution is chosen by averaging each quantile across chips.

2. Set
$$d = \left(\frac{1}{\sqrt{N}}, \dots, \frac{1}{\sqrt{N}}\right)$$

- 3. Sort each column of X to give X_{sort}
- 4. Project each row of X_{sort} onto d to get X'_{sort}
- 5. Get X_{norm} by rearranging each column of X'_{sort} to have the same ordering as original X
- 1. If $q_i = (q_{i1}, \ldots, q_{iN})$ is a row in X_{SORT} then the corresponding row in X'_{SORT} is given by $q'_i = \text{proj}_d q_i$
- 2. The projection is equivalent to talking the average of the quantile in a particular row and substituting this value for each of the individual elements in that row

$$\operatorname{proj}_{d} q_{i} = \frac{q_{i} \cdot d}{d \cdot d} d = \frac{1}{\sqrt{N}} \sum_{j=1}^{N} q_{ij} d = \left(\frac{1}{N} \sum_{j=1}^{N} q_{ij}, \dots, \frac{1}{N} \sum_{j=1}^{N} q_{ij}\right)$$

value and (1-q) fraction of the data is above that value. For example, the 0.5 quantile is the median.

RMA: Summarization Method

Medianpolish

- This is the summarization used in the RMA expression summary Irizarry et al. (2003).
- A multichip linear model is fit to data from each probeset.
- The medianpolish is an algorithm (see Tukey (1977)) for fitting this model robustly.
- Please note that expression values you get using this summary measure will be in log2 scale.

for a probeset k with $i = 1, ..., I_k$ probes and data from j = 1, ..., J arrays

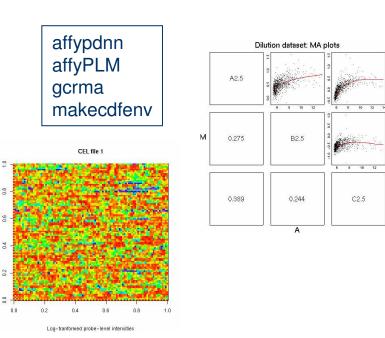
fit the following model $\log_2\left(PM_{ij}^{(k)}\right) = \alpha_i^{(k)} + \beta_j^{(k)} + \epsilon_{ij}^{(k)}$

where α_i is a probe effect and β_j is the \log_2 expression value.

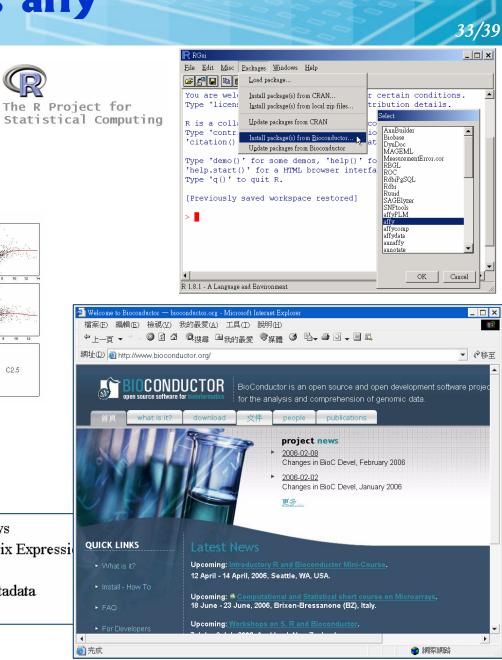
Software

Image Analysis/Normalization

Shareware/Freeware

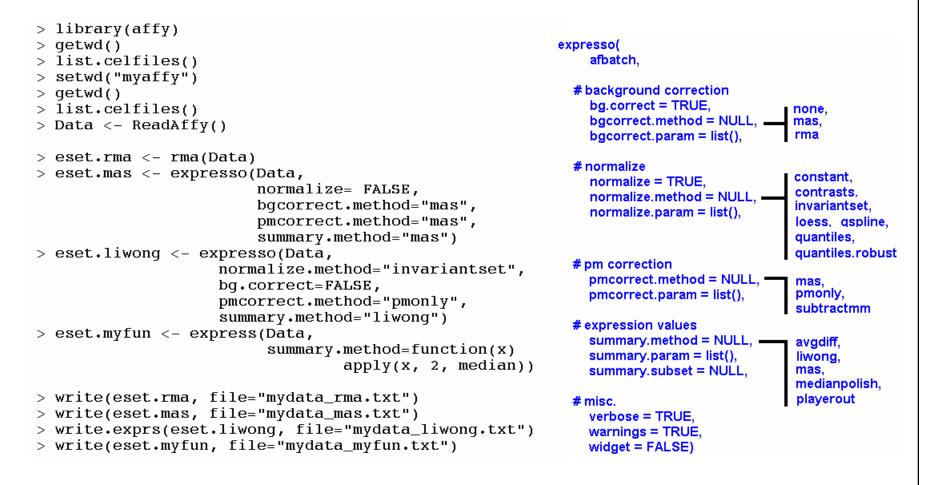

- Bioconductor (R, Gentleman)
- DNA-Chip Analyzer (dChip v1.3) (Li and Wong)
- RMAExpress: a simple standalone GUI program for windows for computing the RMA expression measure.

Commercial

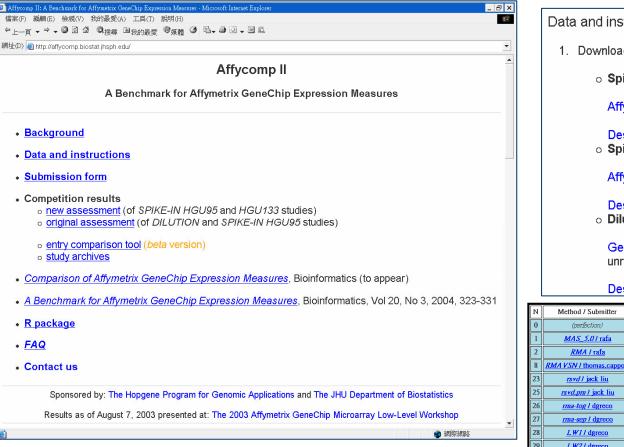

- Affymetrix GeneChip Operating Software (GCOS v1.0)
- GeneSpring GX v7.3

The Bioconductor: affy

The Bioconductor Project Release 1.7 http://www.bioconductor.org/



affy Methods for Affymetrix Oligonucleotide Arrays affycomp Graphics Toolbox for Assessment of Affymetrix Expression affydata Affymetrix Data for Demonstration Purpose annaffy Annotation tools for Affymetrix biological metadata AffyExtensions For fitting more general probe level models


The Bioconductor: affy

Quick Start: probe level data (*.cel) to expression measure.

Comparison of Affymetrix GeneChip Expression Measures

Affycomp II http://affycomp.biostat.jhsph.edu/

Cope LM, Irizarry RA, Jaffee HA, Wu Z, Speed TP. A benchmark for Affymetrix GeneChip expression measures, Bioinformatics. 2004 Feb 12;20(3):323-31.

Irizarry RA, Wu Z, Jaffee HA. Comparison of Affymetrix GeneChip expression measures. Bioinformatics. 2006 Apr 1;22(7):789-94.

Data and instructions

- Download the spike-in and dilution data sets.
 - Spike-in hgu95a Data

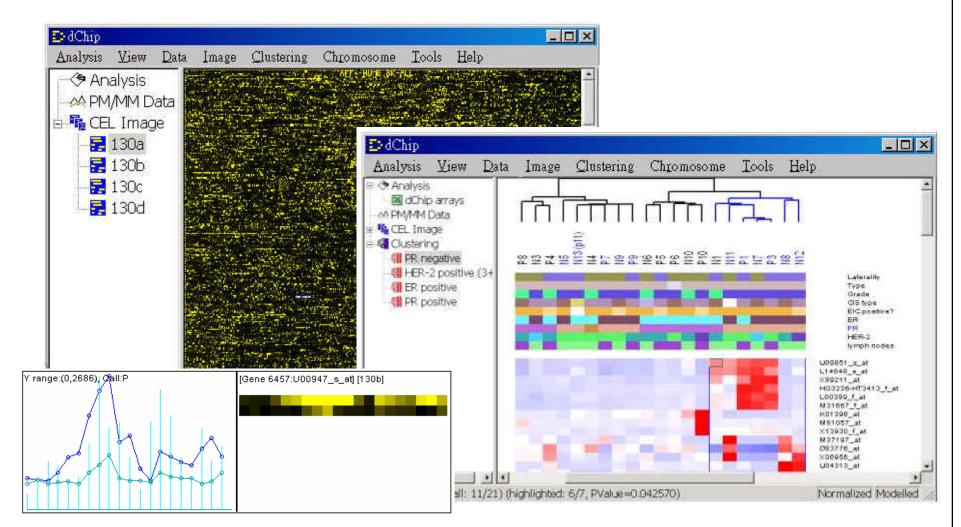
Affymetrix's Spike-in hgu95a Experiment CEL files [gzip-

Description file for this data [text]

o Spike-in hgu133a Data

Affymetrix's Spike-in hgu133a Experiment CEL files [gzip

Description file for this data [text]

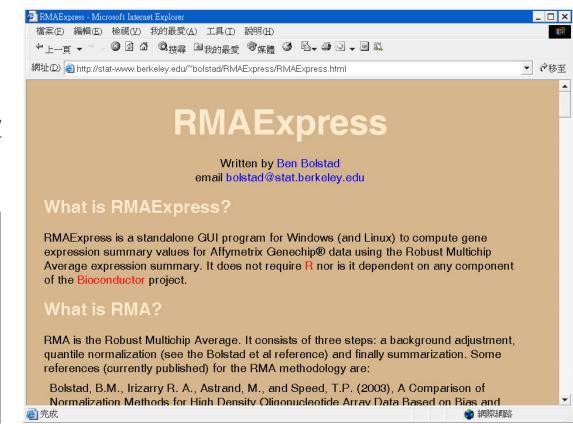

Dilution Data (optional -- see below)

Gene Logic's Dilution Experiment CEL files. If you have unresolvable, so note that submitting a dilution study has

Description file for dilution data [text]

Ν	Method / Submitter	1	2	3	<u>4</u>	5	<u>6</u>	<u>1</u>	<u>8</u>	9	<u>10</u>	<u>11</u>	12	<u>13</u>	<u>14</u>
0	(perfection)	0.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1	<u>MAS_5.01 rafa</u>	0.29	0.47	4.01	0.91	0.77	0.58	0.73	0.77	0.77	0.64	0.09	0.00	0.00	0.06
2	<u>RMA / rafa</u>	0.07	0.13	0.40	0.90	0.68	0.20	0.71	0.80	0.68	0.31	0.57	0.91	0.96	0.65
8	RMA VSN / thomas.cappola	0.02	0.04	0.15	0.89	0.12	0.06	0.13	0.10	0.12	0.08	0.46	0.59	0.43	0.49
23	<u>rsvd I jack liu</u>	0.14	0.12	0.73	0.94	0.74	0.31	0.78	0.73	0.74	0.43	0.53	0.73	0.71	0.58
25	<u>rsvd.pm I jack liu</u>	0.06	0.11	0.34	0.89	0.53	0.12	0.53	0.77	0.53	0.16	0.42	0.90	0.96	0.54
26	<u>rma-tog l dgreco</u>	0.07	0.13	0.40	0.90	0.68	0.20	0.71	0.80	0.68	0.31	0.57	0.91	0.96	0.65
27	<u>rma-sep / dgreco</u>	0.18	0.28	0.96	0.90	0.71	0.27	0.72	0.84	0.71	0.39	0.38	0.53	0.63	0.42
28	<u>L W1 / dgreco</u>	0.08	0.14	1.18	0.91	0.59	0.19	0.62	0.74	0.59	0.25	0.23	0.47	0.55	0.29
29	<u>L W21 dgreco</u>	0.14	0.25	13.88	0.56	1.08	1.50	0.80	0.68	1.08	1.45	0.19	0.00	0.00	0.14
30	<u>rsvd.bgc / jack liu</u>	0.08	0.14	0.52	0.89	0.58	0.16	0.59	0.79	0.58	0.22	0.38	0.80	0.90	0.49
31	<u>cor5231 cope</u>	0.02	0.03	0.12	0.88	0.12	0.06	0.13	0.10	0.12	0.08	0.54	0.77	0.61	0.60
33	<u>UM-Tr-Mn I jmacdon</u>	0.15	0.25	1.86	0.93	0.70	0.36	0.72	0.70	0.70	0.44	0.18	0.10	0.10	0.16
34	GS_RMA / thon	0.07	0.13	0.40	0.90	0.68	0.20	0.71	0.80	0.68	0.30	0.56	0.91	0.96	0.65
35	GS_GCRMA / thon	0.07	0.09	0.65	0.93	0.93	0.37	0.96	0.96	0.93	0.55	0.59	0.87	0.90	0.66
36	gcrma1131 zwu	0.06	0.04	0.61	0.91	1.00	0.25	1.13	0.97	1.00	0.48	0.45	0.91	0.92	0.57
37	<u>rsvd21 jack.liu</u>	0.17	0.28	1.74	0.91	0.75	0.46	0.74	0.81	0.75	0.52	0.29	0.16	0.21	0.26
38	W2371 dario.greco	0.02	0.04	0.17	0.87	0.12	0.05	0.13	0.10	0.12	0.07	0.35	0.54	0.39	0.39
39	RMA_NRG1 holstad	0.01	0.02	0.06	0.90	0.09	0.02	0.09	0.10	0.09	0.04	0.54	0.90	0.93	0.63

DNA-Chip Analyzer (dChip v1.3)


36/39

http://www.biostat.harvard.edu/complab/dchip/

RMAExpress

Ben Bolstad Biostatistics, University Of California, Berkeley http://stat-www.berkeley.edu/~bolstad/ Talks Slides

MAExpress	_ 🗆 🗙
Eile Show About	
Welcome to RMAExpress Written by B. M. Bolstad <bolstad@stat.berkeley.edu> Version: 0.4 alpha 7</bolstad@stat.berkeley.edu>	X
	$\overline{\mathbf{v}}$

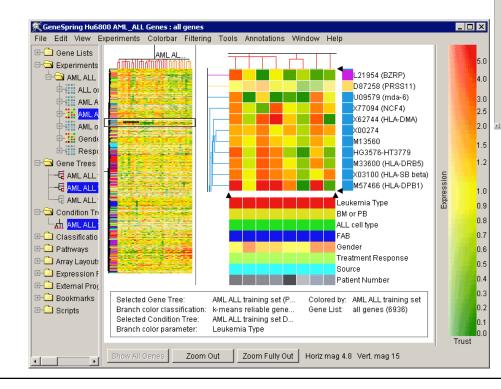
http://stat-www.berkeley.edu/~bolstad/RMAExpress/RMAExpress.html

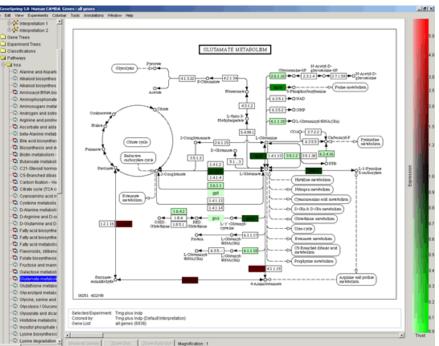
GCOS v1.2.1

Affymetrix GeneChip Operating Software

http://www.affymetrix.com

38/39


Specifications


Instrument Support	 Affymetrix GeneChip[®] Fluidics Station 400 & 450 GeneChip Scanner 3000 GeneArray 2500 Scanner
Affymetrix Software Compatibility	 Support GeneChip DNA Analysis Software (GDAS) for mapping and resequencing data analysis Support Affymetrix[®] Data Mining Tool software for statistical and clus analysis
Database Engine	 Microsoft Data Engine
GCOS Database	 Process Database Publish Database Gene Information Database
Database Management	 GCOS Manager GCOS Administrator
Algorithm	 Affymetrix Statistical Expression Algorithm

sta Source: Local	MALESEM	@ 22 🔯 👪 🤇	8 8				
				38-001			Descriptions 💻
Experimente Iniage Data	1.1.2000-000 D	Stat Pairs	Statt Pairs Used		Detection	Detection p-value	
B 📅 Cellinteraitea	A8000584_w	20	20	239.9	P	0.016670	AB000584. class A. 20 probes. 20 in AB000584 618-1032
🖬 🚮 Analysis Results	A8000996_at	20	20	35.1		0.772364	AB000895. class A. 20 probes. 20 in AB000895 25-395. H
	AB 0000896_aX	20	20	10.5	A	0.724854	AB000895. class A. 20 probes. 20 in AB000895 49-391. H
	AB000897_at	20	20	25.5	A	0.834139	AB000897, class A, 20 probes, 20 in AB000897 43-373, H
GeneChip Software	AB000300_at	20	20	43	A	0.967453	AB000905, class C, 20 probes, 20 in AB000905 1045-125
Genecitip doterate	AB001106_m	20	20	61.Z	P	0.021902	AB001105, class A, 20 probes, 20 in AB001105 3542408
20	AB001325_et	20	20	157.2	A	0.072700	AB001325, class A, 20 probes, 20 in AB001325 967-1387
	AB002314_@	20	20	31.0	A	0.440646	AB002314, class A, 20 probes, 20 in AB002314 6334-689
Esperiments	A8002315_st	20	20	26.0	A	0.358438	AB002315, class A, 20 probes, 20 in AB002315 4819/534
-	AB002318_et	20	20	43.9	A	0.500000	A8002318
	A8002365_w	20	20	6.3	А,	0.953518	AB012365
Batch Analysis	A8002366_at	20	20	18.4	A	0.991021	A8002396
-	A8002380_al	20	20	59.6	Ρ	0.028457	A8 002990
	AB002382_at	20	20	94.8	P	0.015183	A8002382
Publish:	AB002409_at	20	20	8.8	A	0.992360	A8032409
	AB002259_at	20	20	23.5	A	0.440645	AB012513
3	AB003102_#	20	20	191.4	F	0.000225	AB013102
Sample History	AB003103 at	20	20	30.0	A	0.470241	AB003103
	A8003177 at	20	20	161.5	P	0.007620	AB003177
O	AB003696 et	20	20	55.1	A	0.396820	A8003696
Woldow Montor	AR004084 w	20	20	33.7	A,	0.139482	AB004864
	A8006190_at	20	20	101.4	A.	0.131361	A8005190
<u>0</u> 0	AD000061 kds2 st	20	20	17.2	A	0.914969	ACOUCHER THE REAL PROPERTY AND A REAL PROPERTY
Expression Arrielyce	AE000061_cds3_st	20	20	6.3	A	0.927300	AC000061 C.B. C. L. B. C.
Experimental Byon	AE000062 at	20	20	22	A	0.996896	AE000052
Instrument Control	+ + Amalyana Into Metrica M	Wat / 14	1				
Settings		- bas					Rows: 7129 NUM

GeneSpring GX v7.3.1

- RMA or GC-RMA probe level analysis
- Advanced Statistical Tools
- Data Clustering
- Visual Filtering
- 3D Data Visualization
- Data Normalization (Sixteen)
- Pathway Views
- Search for Similar Samples
- Support for MIAME Compliance
- Scripting
- MAGE-ML Export

39/39

Images from http://www.silicongenetics.com

2004 Articles Citing GeneSpring®

2004 : 2003 : 2002 : 2001 : pre-2001 : Reviews

More than 700 papers